APPLICATION OF LOW COST AIR DRYING MODEL IN TRADITIONAL SHIPBUILDING

BAYO-PHILIP PATRICK

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Marine Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

JUNE 2013
Special dedication to my beloved WIFE, DAUGHTER and PARENTS.....
ACKNOWLEDGEMENT

Glory be to God almighty for his preservation, sustenance, mercy, and wisdom for the successful completion of this project. First, I would like to express my sincere gratitude to my supervisor and co-supervisor Dr. Eng Jaswar Koto and Prof. Dr. Ir. Ab Saman b. Abd Kader for providing timely academic guidance, useful comments, remarks, mentoring and engagement throughout the learning process of this master thesis. The execution and completion of this research would not have been smooth without their kind support.

I am also highly indebted to all my lecturers, Dr Pauzi, Prof Adi, Dr Faizul Amri Adnan and Dr Fuaad and to all other lecturers of the department of Marine Technology, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia that I could not vividly recall their names; I say God in his mercy will reward you abundantly. My many thanks also go to their respective families.

Apart from my personal efforts, the success of this research work also depends largely on the encouragement and support of many others. I take this opportunity to express my profound gratitude to all the special people who have been instrumental in the successful completion of this thesis. I feel greatly honoured and privileged to come across great friends like you Ayo, Tope, Siow, Tamer, Sulaiman, Mustafa, Sohail, Mohammed, Saber, Mr Henry and Mr Adesina, my class mates and all the entire members of power palace branch of the redeemed Christian church of
God Malaysia, your impacts will always be remembered. I would also like to show my greatest appreciation to my wife (Funke) for her unconditional support without her encouragement, love, and support, I cannot say for sure if I would have stayed in school for a graduate degree and my beautiful princess (Teniola) who missed daddy’s kisses at her tender moments. God bless you for your understanding, endurance and perseverance.

Furthermore, I would like to acknowledge with much appreciation the crucial role of my parents Mr and Mrs Bayo Philip, sincerely speaking I got a deeper understanding of what parenting is all about during the entire period of my study. I enjoyed a great deal of love, guidance, support, prayers and encouragement. Mummy and daddy I cannot thank you enough. I feel greatly motivated and I pray that God almighty will reward you and always keep you guys in good health and you will eat the fruits of your labour.

My heartfelt appreciation also go to all my siblings for their continued support through phone calls and social media, Mr and Mrs Adebowale Bayo-philip, Mr and Mrs Deji Philip, Bukola, Muyiwa, Busayo, Bolarinwa and Oladayo. I must not forget to extend my sincere appreciation to my in-laws, my mother in-law, Mrs Balogun, sister in-law Miss Lola Taiwo and to my wonderful mother Mrs mojisola Oguntibeju and children for their prayers and encouragement. God will bless you all.

Finally, my profound gratitude goes to the management and staff of Van Oord dredging and marine contractor for their patience and support.
ABSTRACT

Studies have revealed that delay in production process and delivery is one of the major issues in traditional ship building activities in Indonesia. Some other studies have also established unpredictability of the traditional air drying time as the major culprit responsible for the increase in the length of production time, increase in overall project cost and distasteful client/shipbuilder relationship. In the attempt to address the situation, this study proposes a low cost air drying model as an alternative to the traditional air drying method and adopted Indonesia as the study area. Meteorological data for Indonesia were accessed via the internet. A controlled experiment was performed. Two sets of lumber samples named A and C were dried over a period of seven (7) days. Set A was laid in the model (an improvised green house) set up at an open roof terrace at Block P 23, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia. Set C was equally set up next to Set A but exposed and unprotected from the elements of weather. Lumber weight, relative humidity, temperature and time were taking at intervals for the two sets A and C simultaneously. The data collected were analyzed using Microsoft Excel. Graphs were plotted and interpreted. Lumber drying schedule for both traditional method and the proposed Low Cost Model were developed using meteorological data for a particular area in Indonesia noted for traditional ship building. A comparative analysis of the two schedules was done and the advantages of the Low cost Model over the traditional method were established.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General 1

1.2 Background of Study 2

1.3 Problem Statement 3
1.4	Objective of Study	5
1.5	Research Questions	6
1.6	Scope of Study	6
1.7	Significance of the Study	7
1.8	Expected Results	8
1.9	Research Arrangement	8

2 LITERATURE REVIEW

2.1	Introduction	9
2.2	Use of Lumber in Ship Building	10
2.2.1	Equilibrium moisture content EQ	10
2.3	Wood Drying	12
2.4	Lumber Drying Methods	15
2.4.1	Air Drying Methods	15
2.4.1.1	Open Yard	15
2.4.1.2	Shed	16
2.4.1.3	Forced-Air Shed	16
2.4.1.4	Warehouse Pre-drying	17
2.4.2	Kiln Drying	17
2.4.2.1	Low Temperature Drying	17
2.4.2.2	Conventional Steam-Heated Drying	18
2.4.2.3	Vacuum Drying	18
3 RESEARCH METHODOLOGY

3.1 Introduction 20
3.2 Design of Operational Framework 20
3.3 Data Collection 23
 3.3.1 Data Collection Tools / Instrument 23
 3.3.2 Data Collection Procedure 23
 3.3.2.1 Apparatus 23
 3.3.2.2 Experimental setup 24
3.4 Data Analysis 25
3.5 Apply the Obtained Data to Generate a Schedule 26

4 DATA COLLECTION

4.1 Introduction 27
4.2 Construction of the Air Drying Model 27
4.3 Experimental Setup and Procedure 28
4.3 Immersion of Samples in Water 29
4.4 Sample Arrangement 31
4.5 Data Collection 32

5 RESULT AND ANALYSIS

5.1 Experimental Results 36
5.1.1 Required Drying Time of Lumber. 36
5.1.2 Comparison between the Use of the Proposed Model and Traditional Method. 40
5.1.3 Effect of Air Drying on the Size of the Lumber 41

5.2 Applying the Air Drying Time Data to Generate Schedule 42

5.2.1 Assumptions 42

5.3 Prediction of total drying cycles 44
5.4 Drying Scheduling and Delay Time 46
5.5 Summary 56

6 CONCLUSION AND RECOMENDATION

6.1 Introduction 58
6.2 Research contribution 58
6.3 Conclusion 59
6.4 Recommendation and Future works 59

7 REFERENCES 60

APPENDICES A-I 64
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The time interval used for the first day</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>The time interval used for the day two and day three</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>The time interval used for day four today seven</td>
<td>34</td>
</tr>
<tr>
<td>5.1</td>
<td>The initial data for sample A after immersion</td>
<td>37</td>
</tr>
<tr>
<td>5.2</td>
<td>Series 60 – 4252 and Traditional Wooden Ship particulars</td>
<td>45</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison between both the drying methods</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Drying lumber method in Kepulauan Riau, Indonesia</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>Research flow of optimization of traditional ship production.</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Construction of the Air Drying model</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Samples immersed in water</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Measuring initial weight of sample A after immersion</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>The arrangement of the samples</td>
<td>31</td>
</tr>
<tr>
<td>4.5</td>
<td>Experiment under rain showers</td>
<td>32</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample A being weighted</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>Sample C being weighted</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Graphs showing the air drying time of lumber in two specific conditions</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>Rainfall for June, 2013 by Department of Irrigation and Drainage Malaysia.</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of rainfall on drying of lumber using the proposed technique and traditional technique.</td>
<td>41</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of air dry time on the size lumber using the proposed technique.</td>
<td>42</td>
</tr>
</tbody>
</table>
5.5 The (2012) annual rainfall distribution for Kepulauan Riau, Indonesia 44

5.6 Rainfall distributions for the month of January, 2012 49

5.7 Rainfall distributions for the month of April 2012 50

5.8 Rainfall distributions for the month of June, 2012 50

5.9 Rainfall distributions for the month of December, 2012 51

5.10 Lumber Drying schedule for April 2012. 52

5.11 Lumber Drying schedule for June 2012 53

5.12 Lumber Drying schedule for December 2012. 54

5.13 Lumber Drying schedule for January, 2013 55
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Moisture Decrease 1</td>
<td>64</td>
</tr>
<tr>
<td>B</td>
<td>Moisture Decrease 2</td>
<td>65</td>
</tr>
<tr>
<td>C</td>
<td>Moisture Decrease3</td>
<td>66</td>
</tr>
<tr>
<td>D</td>
<td>Moisture Decrease</td>
<td>67</td>
</tr>
<tr>
<td>E</td>
<td>Sample a Moisture decrease characteristics</td>
<td>68</td>
</tr>
<tr>
<td>F</td>
<td>Moisture decrease4</td>
<td>69</td>
</tr>
<tr>
<td>G</td>
<td>Moisture decrease5</td>
<td>70</td>
</tr>
<tr>
<td>H</td>
<td>Moisture decrease6</td>
<td>71</td>
</tr>
<tr>
<td>I</td>
<td>Moisture decrease Characteristics</td>
<td>72</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General

This study begins with a history of Indonesia maritime culture and highlights the evolution of traditional wooden ship. It also identifies some of the peculiar problems associated with traditional shipbuilding process in Indonesia particularly the issue of delivery. It then goes on to examine ways of proffering a solution to the identified problem. The study through the application of experimental techniques investigated the air drying time of lumber in two specific conditions. In addition, the data collected from the model test is analyzed and applied. The study proposes and advocates the adoption of low cost air drying technique of lumber. The study posits that the adoption of the air drying technique has the capacity to impact positively on the production process in traditional shipyards and ultimately lead to optimization of the production process. Lastly, it suggests areas of interest for future studies.
1.2 Background of Study

Indonesia traditional ship is a product of an indigenous technology developed long before the advent of western culture along the Coast of Sulawesi Island. The ships are built traditionally in both method and equipment without any sketches or calculations. The building expertise is passed down from generation to generation, a knowledge that is further honed through daily practice with the help of each builder’s instincts and natural gift. Still built by hand in the traditional manner, these majestic sailing ships are a living spirit of the golden age of sail, which ended in the West in the early twentieth century, but still thrives in the waters of Indonesia.

The beauty and efficiency is not a product of technical science, they are a product of the spiritual nature of these people and their culture. They are at one with their environment and they follow a path of least resistance in their lives and in their work. This philosophy contributes to the beauty and efficiency of their ship designs, and it comes from a basic and simple understanding of the world in which they live. This philosophy based nature and balance allowed the peoples of the Indonesian islands to produce solutions to practical challenges long before the societies of Europe were able to.

In as much as one would like to appreciate the people and their philosophy, it is also good to mention that a mix of local craft and beliefs plus modern and scientific ways of doing things will go a long way in transforming the practice of ship building in Indonesia. Advances in science and technology, and abundant information available on the World Wide Web has caused unprecedented changes in many areas of human endeavor. However, Indonesian traditional ship builders have not taken full advantage of available technology and information particularly in the preparation of lumber which remains one of the critical and most unpredictable stages in construction. They have failed to explore outside the ancient method of wood preparation other possible ways of making lumber ready for use in shipyards.
Nofrizal et al, 2012 has raised the drying lumber issue in traditional shipbuilding in Kepulauan Riau, Indonesia which is shown in Figure.1.1.

![Figure 1.1: Drying lumber issue in traditional ship production in Kepulauan Riau, Indonesia.](image)

It is in the light of the above statement that this study will like to identify from literature different ways of preparing lumber for use in traditional shipyards and proposed a low cost model that may help in impacting the practice of traditional ship building in Indonesia positively.

1.3 Problem Statement

Literature reviewed revealed that several studies have identified some of the specific issues central to traditional ship construction in Indonesia. Mufti et al, 2012, lamented the lack of a blueprint or formal sketches as well as calculations on performance during the design stage. The study stated that the traditional ship
designs are derived from the replication of an existing ship that is serving its purpose well or from informal conversation between the shipbuilders and the client.

In another study, E. Prayetno et al, 2012, dwelt on quality control issues in traditional shipbuilding. The study mentioned that there is no standard quality control measure in the choice of materials. The master builders depend heavily on their senses specifically visual assessment and on the job experience acquired over the years. There is no scientific approach to quality control.

Moreover, A. Deah et al 2012, addressed safety issues from the perspectives of occupational safety and policies. The study observed that at the construction stage most of the builders failed to take necessary precautions to arrest issues that can expose workers to fatal injuries and jeopardize their health. For instance workers are not provided with the required safety wears such as helmet, boot, hand gloves that can protect them against injuries. Furthermore, the study highlighted non compliance to specified safety regulations at the point of ship building as laid down by government appointed regulatory agencies.

It is important to mention that some other studies have identified delivery as one of the critical issues in traditional ship building process. Surhan et al 2012, mentioned that the traditional shipbuilding process follows a certain unique procedure, a procedure which been handed down from one generation to another generation. The study posited that the unique procedure adopted by the builders was often fraught with flaws. These observed flaws make it almost impossible to give a definite start or completion date for a given project.

One of the major flaws cited by Surhan et al 2012, centred on the refusal of the builders to take advantage of available knowledge in modern day science and technology. The preparation and processing of wood for construction till date still
take place in the open air. Consequently, wood air drying time remains dependent on prevailing weather conditions. Hence, it is difficult to estimate or project the time required to air dry a given quantity of wood needed to build a specific ship size.

Modern technology nowadays however, does allow wood drying to be carried out in diverse ways instead of just drying outside under the sun. This makes room for better and consistent results as the process can be partly or fully controlled. Not only that, it can also help in the projection of air drying time of wood and also encourage the application of scheduling tools at the construction stage. Application of scheduling tools in return may be an advantage in the optimization of the overall ship production process.

The focus of this study is to discuss and address lumber air drying time, and also develop a model that can be used in air drying time calculation. The ultimate goal is to propose a low cost air drying model which may be used to predict the time required to prepare a specific needed quantity of lumber for a given size of ship. This study believes that the proposed model with the ability to predict time for air drying of lumber will eliminate non standardization of time which has been a familial and perennial problem and hence the optimization of the overall production process through the application of scheduling tools.

1.4 Objective of Study

The objectives of this research are as follows:

i. To establish from literatures the different methods employed in drying of lumber.
To develop a low cost model that can be used to predict the air-drying time of lumber.

iii. To conduct an experiment for estimating air-drying times of lumber in two specific conditions.

iv. To generate a comparable schedule of lumber air-drying time in specific conditions.

1.5 Research Questions

The research work has actually raised a few questions in order to have a clear understanding of the implications of the research prior to when the final results will be obtained. These questions are:

i. What are the major building materials in traditional shipbuilding?

ii. Where are the materials located?

iii. How are the materials treated or prepared?

iv. What are the likely challenges in material preparation?

v. What are the likely consequences of the challenges in 4 above?

vi. How can the challenges in 4 above be eliminated?

1.6 Scope of Study

The scope of this study includes the following:

i. It is experimental in nature

ii. It is a quantitative study

iii. It is not a case study.
iv. Limited to study of traditional ship in Indonesia.
v. It is not a study of physical properties of lumber though it may involve a little of discussions on physical attributes of lumber

1.7 Significance of the Study

This study is significant because traditional wooden ship continues to be the vessel of choice for Indonesian fishermen. However, the unplanned work environment plus the exposure of both workmen and materials to the elements of weather make the production process especially lumber drying time highly unpredictable. Consequently, the builders often times find it difficult to prosecute contract jobs and deliver the finished product within the time specified in the contractual agreement.

Failure on the part of the builder to deliver has implications for builder-client business relationship as well as economic implications for both the builder and the client. The study of this nature has the potential to improve in a measurable manner the quality of the work environment as well the organisation of work within the shipyard. It can also help in the introduction of standardization of work breakdown which may encourage the use of scheduling tools. This study is of the opinion that the use of scheduling tools will ultimately lead to optimization of production processes within the sphere of traditional shipyards. In addition the optimization of the process may

i. reduce project duration
ii. reduce project costs
iii. improve project efficiency
iv. improve builder/client business relationship
1.8 Expected Results

Upon the completion of the experiment and analysis of data collected it is expected that:

i. The proposed model should be able to predict the time required to air dry a specific quantity of wood.

ii. The cumulative time required for air drying maybe translated into the overall production process and hence generate a practicable and an effective scheduling structure which may be put to test on real shipyard environment.

1.9 Research Arrangement

The arrangement of this research is shown below:

i. The chapter one is the introduction to research problem which comprises of research background, problem statement, scope of study, and expected result.

ii. Chapter two is conducting a literature review of existing research studies.

iii. Chapter three is the research methodology

iv. Chapter four is the data collection, analysis, and results.

v. Chapter five is the discussion of the result obtained in Chapter 4.

vi. Finally, chapter six is a conclusion, recommendation for future work.
REFERENCES

H. Saputra et al 2012, Critical Path Analysis of Traditional Ship Production in Kepulauan Riau-Indonesia, the 6th Asia-Pacific Workshop on Marine Hydrodynamics, Pp.577 - 581, Malaysia

Paul De Saint Front (*Boatbuilding In Indonesia*)

S. Vongpradubchaia; P. Rattanadechoa, 2011. *Microwave and Hot Air Drying of Wood Using a Rectangular Waveguide*, Research Center of Microwave Utilization In Engineering (R.C.M.E.), Faculty Of Engineering, Department of Mechanical Engineering, Thammasat University (Rangsit Campus), Pathum Thani, Thailand.

Analysis of U.S. Commercial Shipbuilding Practices. 1991 Ship Production
Planning for Shipbuilding with Variation - Inventory Trade - Off.
6249-6272.