Computer Science

Combination of Bidirectional Conceptual Map and Genetic Algorithm for E-Learning Evaluation System
Chin-Ling Lee, Cheng-Jian Lin

Case-based Reasoning System for Prediction of Collaboration Level using Balanced Scorecard: A Dyadic Approach for Distributing and Manufacturing Companies
Se Hun Lim

Detect and Represent Lines Based on a Set of 3-Pixel Elementary Units
Wei Hui, Wang Zengjin, Liu Bin

Effective Algorithm CFL Based on Steiner Tree and UFL Problem
Hong-Zhen Zheng, Dian-Hui Chu, De-Chen Zhan

Weak LI-ideal in Lattice Implication Algebra
Lai Jiajun, Xu Yang, Zeng Zhaoyou, Wu Shuiting

Speech-enabled windows application using Microsoft SAPI
Hao Shi, Alexander Maier

Hardware Implementation and Study of Inverse Algorithm in Finite Fields
Bao Kejin, Song Yonggang

Spatio-Temporal Object Relational for Biodiversity System (STORe-Biodi)
Mohd Taib Wahid, A.Z.M Kamruzzaman, Abdul Rashid Mohamed Shariff

A Novel Classification Method and its application in Flow Forecast
Li Qianmu, Xu Manwu

A Scaleable Multiprocessor Architecture with Multiple Read-Write Memory Model
Cemal Köse, Özcan Özyurt

The Effectiveness of the Use of Educational Content in Primary and Secondary Schools in Korea
Yong Kim, Jeong-Hee Seo

The Uncertain Two-tuple Ordered Weighted Averaging Operator
Yao Zhang, Zhi-Ping Fan

A Clustering-based Scheme for Labeling XML Trees
Sadegh Soltan, Masoud Rahgozar

Map-based Public Awareness Building System for Disaster Prevention
Akira Hattori, Sayaka Matsumoto, Takami Yasuda, Shigeki Yokoi

ITRM: A Temporal Data Model Supporting Indeterminacy
Jia-Dong Ren, Hui-Li Peng, Xiao-Jian Zhang

Vertex Guards in a Subclass of Orthogonal Polygons
Ana Mafalda Martins, Antonio Leslie Bajuelos
Spatio-Temporal Object Relational for Biodiversity System (STORe-Biodi)

Mohd Taib Wahid¹, A.Z.M Kamruzzaman², Abdul Rashid Mohamed Shariff³

¹taib@fsksm.utm.my, ²akzaman@siswa.utm.my, ³rashid@eng.upm.edu.my

¹,²Department of Information Systems
Faculty of Computer Science & Information Systems
University Technology of Malaysia, K.B. 791
8130 Skudai, Johor, Malaysia
Tel: (607)-5532422, Fax: (607) 5565044

³Department of Biological & Agricultural Engineering,
Faculty of Engineering, University Putra Malaysia
Tel: (603)-89466414, Fax: (603)-89466425

Summary
Spatio-temporal data model for biodiversity is owing importance to the biodiversity data management, forest and environment control. Spatio-temporal data models have received much attention in the database research community because of their practical importance and interesting challenges they pose. This paper is focused upon the research activities of selecting, designing, implementing the data model. The paper can be divided by two major parts: first: discuss about biodiversity data model and secondly: spatio-temporal conceptual framework design of biodiversity data model for terms stewardship of biodiversity formation. In this paper our main objective to minimize the extension required in SQL language. This paper also focuses on the unified models of space and time using object-relation approach. In particular, we propose a conceptual object-relational spatial temporal data model used on Donna J. Peuquet's pyramid framework. Standard and user management queries are applied to test the model. After extensive testing, the data model performed admirably in managing biodiversity data.

Keywords: Spatio-temporal, Data model, biodiversity data, Object-relational, SQL.

Introduction
After two decades of research, representation of space and time in databases and functional applications are still problematic [1]. This paper presents a universal object-relational framework for spatial temporal data modeling. Spatial temporal data modeling aims to extend the existing data models to include space and time in order to better describe our dynamic real world.

Problem with previous data models is that spatial and temporal aspects of databases are modeled separately [2], [3]. Spatial database focuses on supporting geometries [4], while temporal databases focus on the past state [5]. But in many circumstances, such as environmental monitoring, resource management, transportation scheduling, etc, spatial and temporal attributes should be connected together. Many current systems can handle only one aspect of space and time. Spatial systems always fail to cater for many temporal aspects in a dynamic environment [6]. Though many researchers have found the necessity of integration of space and time in one environment, by far, little such work has been done.

Another problem is representation of data should be natural to human. The structures of space and time are identified as essential for the realization of cognitive systems [10]. According to Donna J. Peuquet and her group [11], models of spatial temporal data in geographical database representations must incorporate human cognitive principles. Human knowledge of the dynamic geographical world comprises of three different (and interrelated) subsystems that handle what, where and when aspects of object properties [8]. Object relational approach with its characteristic of inheritance and aggregation is