Mohd. Hashim, Siti Zaiton and A. Hamed, Zakaria (2012) Hybrid PSO-Black stork foraging for functional neural fuzzy network learning enhancement. In: 2012 IEEE International Conference on Systems, Man & Cybernetics.
Full text not available from this repository.
Abstract
Fuzzy Neural Networks consider one of the most important computational tools which are applied in many areas such as classification, pattern recognition and medical diagnosis. The learning process is very crucial for fuzzy neural network to be powerful in solving problems. In this study, a hybrid black stork foraging process based on particle swarm optimization (BSFP-PSO) is used to enhance the learning of new existing approach of fuzzy neural network called functional neural fuzzy network (FNFN). Classification problem have been adopted to assess the performance of the new proposed model black stork foraging process hybrid particle swarm optimization and functional neural fuzzy network. In conclusion, the experimental results have shown that the performance of the proposed model is better than the performance of standard particle swarm optimization with functional neural fuzzy network for solving Iris and Breast cancer classification in terms of error rate and classification accuracy.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Divisions: | Computer Science and Information System |
ID Code: | 34106 |
Deposited By: | Liza Porijo |
Deposited On: | 17 Aug 2017 03:37 |
Last Modified: | 07 Sep 2017 04:19 |
Repository Staff Only: item control page