GLOWBAL WARMING POTENTIAL OF BUILDING DEMOLITION ACTIVITIES

FARZAN GHAVAMI RAD

This project report is submitted as a partial fulfillment of the requirement for the award of the degree of Master of Science (Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY, 2013
ACKNOWLEDGEMENT

First and foremost I offer my sincerest gratitude to my supervisor, Dr Khairulzan Yahya, who has supported me throughout my report with his patience and knowledge. I attribute the level of my Master’s degree to his encouragement and effort and without him this report, too, would not have been completed or written. One simply could not wish for a better or friendlier supervisor. And also I would like to express my deep gratitude for the constant guidance and Support from my co-supervisor, Dr Arham Abdullah, during fulfill this study. His insight, suggestions and criticism contributed in large measure to the success of this research and also Faculty of Civil Engineering (FKA) for their support to conduct this work.
Continuation of urbanization is expected to gradually rise the energy demand for consumption and economic activities. Therefore, a sustainable approach to the development is needed to reduce the consumption of energy. Malaysia has recorded 7.3 tons in carbon dioxide emission per capita in the year 2007. This amount puts Malaysia in the 57th place in the world. This is due to an increase in oil derivatives and gas expenditures in the last decade. Fuel consumption also has a significant role in the demolition of the construction sites as well as their waste disposal. Hence, an increase of demands for demolition has a negative impact on these criteria. Building demolition as a case study for life cycle assessment (LCA) that was conducted for a 18740 m² floor area, four-storied office, with one story as the top floor, one bridge for connecting the structures and a two-storey basement car park. Menara Tun Razak as its subject, with a projected life span of 29 years; it is located in the commercial area of Kuala Lumpur. Furthermore, a Building Information Modeling (BIM) system is used to determine the accurate quantity of elements and its simulation. The LCA model analyzes the energy use and greenhouse gas (GHG) emissions associated with demolition and waste disposal. The findings show that as much as 225039.021 kilograms of CO2 equivalent of GHGs were released for 15147862 tons of demolition materials where, 97.633 percent or 219713.1 kilogram CO2 equivalent from the amount was carbon dioxide, followed by 1.358 percent or 3056.47 kg CO2 equivalent of methane, 1.008 percent or 2269.188 kilogram CO2 equivalent of dinitrogen monoxide and 0.001 percent or 0.225 kg CO2 equivalent of other gases such as chloroform and ethane. The processes that contributed significantly to the total GHGs emission were mainly from the burning of 57688.8 liters of diesel fuel during demolition. Besides, it is also shown that demolition and waste disposal had a 71.95 percent and 28.04 percent contribution in reinforce concrete framework structure share in producing GHG.
ABSTRAK

Pembandaran yang berterusan dijangka akan meningkatkan permintaan tenaga untuk kegunaan aktiviti ekonomi. Oleh itu, satu pendekatan untuk perkembangan mampam diperlukan untuk mengurangkan penggunaan tenaga. Malaysia mempunyai penunjuk mampam sebanyak 7.3 tan pelepasan karbon dioksida per kapita pada tahun 2007. Jumlah ini meletakkan Malaysia di kedudukan ke-57 dunia. Ini adalah kerana peningkatan derivatif minyak dan perbelanjaan gas dalam dekad terakhir. Penggunaan bahan api juga mempunyai peranan penting dalam meroboh dan melupuskan sisa pembinaan. Oleh itu, permintaan untuk meroboh bangunan yang meningkat memberi kesan negatif kepada isu kemampanan. Kajian ini menerangkan satu kajian kes berkaitan perobohan ‘life cycle assessment’ (LCA) yang telah dijalankan untuk 18.740 m² kawasan lantai, pejabat 4 tingkat, 1 tingkat atas, sebuah jambatan sambungan kepada struktur dan 2 tingkat tempat letak kereta bawah tanah. Tambahan pula, sistem ‘Building Information Model’ (BIM) digunakan untuk menentukan kuantiti yang tepat dan simulasi. Model LCA menganalisa penggunaan tenaga dan pelepasan gas rumah hijau (GHG) yang berkaitan dengan perobohan dan pelupusan sisa. Bangunan kesian kes yang dipilih adalah Menara Tun Razak berusia 29 tahun yang terletak di kawasan komersial di Kuala lumpur. Penemuan menunjukkan bahawa sebanyak 225039.021 kilogram CO2 bersamaan dengan GHG telah dilepaskan untuk pengeluaran 15147862 tan bahan perobohan, 97.633peratus atau 219713,1 kilogram bersamaan CO2 daripada jumlah karbon dioksida, diikuti oleh 1,358 peratus atau 3056,47 kg bersamaan CO2 metana, 1,008 peratus atau 2.269,188 kilogram bersamaan CO2 dinitrogen monoksida dan 0,001 peratus atau 0,225 kg bersamaan CO2 gas lain seperti kloroform dan etana. Proses yang paling ketara menyumbang kepada jumlah pelepasan GHG adalah pembakaran 57688,8 liter diesel semasa melakukan aktiviti. Selain itu, ini juga menunjukkan bahawa pelupusan dan sisa perobohan mempunyai 71,95 peratus dan 28,04 peratus sumbangan untuk mengukuhkan rangka kerja bahagian struktur konkret dalam menghasilkan GHG.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introductions 1
1.2 Background of Research 3
1.3 Problem Statement 11
1.4 Aim of Research 13
1.5 Objective of Research 13
1.6 Scope of Research 14

2 LITERATURE REVIEW

2.1 Introduction 16
2.2 An Over View of the BIM 16
 2.2.1 BIM in a wider context 17
 2.2.2 Benefits from using BIM 19
 2.2.3 Benefits from using BIM 20
 2.2.3.1 Owner 20

2.3 Other Related Works 21
2.3 An Overview of the Demolition Industry

2.3.1 The Demolition Process
- 2.3.1.1 Pre-Demolition Phase
- 2.3.1.2 Demolition Phase
- 2.3.1.3 Post-Demolition Phase

2.3.2 Demolition Techniques
- 2.3.2.1 Demolition by Hand
- 2.3.2.2 Demolition by Towers and High Reach Cranes
- 2.3.2.3 Demolition by Machines
- 2.3.2.4 High Reach Machines
- 2.3.2.5 Hydraulic Shear
- 2.3.2.6 Hydraulic Pulverizer or Crusher
- 2.3.2.7 Hydraulic Multi-purpose Processor
- 2.3.2.8 Demolition by Chemical Agents
- 2.3.2.9 Demolition by Water Jetting

2.4 An Overview of the Wastage

2.4.1 Municipal Solid Waste

2.4.2 Construction and Demolition Wastage

2.4.3 Waste disposal:
- 2.4.3.1 Landfill:
- 2.4.3.2 Re-use of waste:
- 2.4.3.3 Recycling

2.4.4 Current Waste Management Practices

2.5 An Overview of Life Cycle Assessment Method

2.5.1 History

2.5.2 Methodology

2.5.3 Goal and Scope Definition

2.5.4 Life Cycle Inventory Analysis

2.5.5 Life Cycle Impact Assessment

2.5.6 Life Cycle Interpretation

2.5.7 Strengths and weaknesses of LCIA

2.5.8 Databases for LCA studies
2.5.8.1 Impact evaluation
2.5.9 Impact categories
2.5.10 Impact assessment methods
2.5.10.1 BEES
2.5.10.2 Endpoint Impact Assessment: Eco-indicator 99
2.5.10.3 Endpoint and Midpoint Impact Assessment: IMPACT 2002+
2.5.10.4 ReCiPe
2.5.11 LCA tools
2.5.12 Bousted Model
2.5.13 Drivers and barriers for using LCA in the building sector

2.6 An Over View of Pollution
2.6.1 Energy Pollution
2.6.2 Material Pollution
2.6.3 Global Warming
2.6.4 Carbon emission in Malaysia
2.6.5 Carbon processes in building materials
2.6.6 Substances that reduce the ozone layer
2.6.7 Reduction of Pollution in Construction, Use and Demolition

2.7 An Over View of Gasoline and Diesel in Malaysia

3 METHODOLOGY
3.1 Introduction
3.2 Case study
3.3 Process of demolition
3.3.1 Mobilization of equipment.
3.4 LCA Methodology
3.4.1 Goal and scope definition
3.4.2 Life Cycle Inventory
3.4.3 Life Cycle Impact Assessment
3.4.3.1 Method and tool
3.4.4 Interpretation
3.5 Data Gathering

4 ANALYZING AND DISCUSSION
4.1 Introduction

4.2 Machinery

4.2.1 Demolition

4.2.1.1 HITACHI EX100

4.2.1.2 Sumitomo SH100 EX100

4.2.1.3 Sumitomo SH200 EX200 LH43

4.2.1.4 HITACHI EX200 LH16

4.2.1.5 HITACHI EX200 LH21

4.2.1.6 HITACHI EX220 LH11

4.2.1.7 HITACHI EX300 D

4.2.1.8 HITACHI EX300 LH 42 R

4.2.1.9 HITACHI EX300 LH35 Y

4.2.1.10 HITACHI EX300 R

4.2.1.11 HITACHI EX450 R

4.2.1.12 Air Compressor

4.2.1.13 Motor pump

4.2.2. Supply chain activities

4.2.2.1. Transport barrels of diesel

4.2.2.2 Transport excavations

4.2.2.3 Forman Transportation

4.2.3. Waste Disposal

4.2.3.1 Rebar transportation

4.2.3.2 Aluminum Transportation

4.2.3.3 Debris Transportation

4.3. Structure

4.3.1. Wall

4.3.1.1 Masonry Wall

4.3.1.2 Concrete Wall

4.3.1.3 Glass and Gypsum Wall

4.3.2 Concrete column

4.3.3 Concrete Beams

4.3.4 Concrete Slabs

4.3.5 Concrete Stairs

4.3.6 Debris Volume
4.3.7 Scrap Rebar in Demolition Process
4.4 Total of LCA in Demolition and Disposal Stages

5 CONCLUSION

5.1 Introduction
5.2 Conclusion
5.3 Recommendation for Improvement and Future Research

REFERENCES

APPENDICES

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I
APPENDIX J
APPENDIX K
APPENDIX L
APPENDIX M
APPENDIX N
APPENDIX O
APPENDIX P
APPENDIX R
APPENDIX S
APPENDIX T
APPENDIX W
APPENDIX X
APPENDIX Y
APPENDIX Z
APPENDIX AA
APPENDIX AB
APPENDIX AC
APPENDIX AD 247
APPENDIX AE 248
APPENDIX AF 252
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Published LCAs applied within the building sector within the last 15 years</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Environmental impacts associated with different buildings.</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Sources and Types of Solid Wastes</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Current Waste Management Practice</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Life Cycle Impact Categories</td>
<td>58</td>
</tr>
<tr>
<td>2.4</td>
<td>LCA and LCI Software Tools</td>
<td>63</td>
</tr>
<tr>
<td>2.5</td>
<td>Energy-related pollution in production processes based on fossil fuels</td>
<td>67</td>
</tr>
<tr>
<td>2.6</td>
<td>Important greenhouse gases related to building materials</td>
<td>71</td>
</tr>
<tr>
<td>2.7</td>
<td>Carbon Emission Data per capita from 1970 through 2009 in Malaysia</td>
<td>72</td>
</tr>
<tr>
<td>2.8</td>
<td>Gasoline Specifications</td>
<td>76</td>
</tr>
<tr>
<td>2.9</td>
<td>Six kind of Gasoline that are exist in Malaysia</td>
<td>76</td>
</tr>
<tr>
<td>2.10</td>
<td>Diesel Specification</td>
<td>77</td>
</tr>
<tr>
<td>2.11</td>
<td>Six kind of Diesel that are exist in Malaysia</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Transport Excavation</td>
<td>116</td>
</tr>
<tr>
<td>4.2</td>
<td>Material Transportation</td>
<td>118</td>
</tr>
<tr>
<td>4.3</td>
<td>Number of Columns in Menara Tun Razak</td>
<td>133</td>
</tr>
<tr>
<td>4.4</td>
<td>Quantity of Numbers, Reinforcement, Concrete Volume of beams</td>
<td>136</td>
</tr>
<tr>
<td>4.5</td>
<td>Concrete Slabs plan</td>
<td>139</td>
</tr>
</tbody>
</table>
4.6 weight and volume of Debris production 143
4.7 Scrap Rebar production 144
5.1 GHG emissions of demolition case study BEES V4.02 148
5.2 BEES V4.02 Characterization Global warming (g eq co2) for 150
A.1 Global Warming Potential and Acidification Potential in construction, use and demolition of building materials 163
A.2 Specification of CATERPILLAR excavators 166
A.3 Hitachi Ex 100 Details 169
A.4 Sumitomo SH 100 EX 100 Details 171
A.5 Sumitomo SH200 EX200 Details 172
A.6 HITACHI EX 200 LH16 Details 173
A.7 HITACHI EX220 LH 11 Details 174
A.8 HITACHI EX 300 D Details 175
A.9 HITACHI EX450 Details 177
A.10 LORRY DELTA ISUZU Details 178
A.11 NISSAN DIESEL LORRY Details 179
A.12 Hitachi EX100 with hours working and fuel consumption in Menara Tun Razak case study 180
A.13 Sumitomo SH100 EX100 with hours working and fuel consumption in Menara Tun Razak case study 182
A.14 Sumitomo SH200 EX200 with hours working and fuel consumption in Menara Tun Razak case study 185
A.15 Hitachi EX200 LH16 with hours working and fuel consumption in Menara Tun Razak case study 187
A.16 Hitachi EX200 with hours working and fuel consumption in Menara Tun Razak case study 190
A.17 HITACHI EX220 with hours working and fuel consumption in Menara Tun Razak case study 194
A.18 HITACHI EX300 with hours working and fuel consumption in Menara Tun Razak case study 196
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.19</td>
<td>Hitachi EX300 LH42 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>A.20</td>
<td>Hitachi EX300 LH35 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>A.21</td>
<td>Hitachi EX450 R with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>A.22</td>
<td>Air compressor with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>A.23</td>
<td>Motor pump with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>A.24</td>
<td>Diesel Transportation</td>
</tr>
<tr>
<td>A.25</td>
<td>Schedule Lorry for Transportation Reinforcement Rebars</td>
</tr>
<tr>
<td>A.26</td>
<td>Schedule Lorry for Transportation Reinforcement Rebars</td>
</tr>
<tr>
<td>A.27</td>
<td>lorry Schedule for transport debris</td>
</tr>
<tr>
<td>A.28</td>
<td>Masonry Wall data extraction from Revit structure software</td>
</tr>
<tr>
<td>A.29</td>
<td>Concrete Wall Plan</td>
</tr>
<tr>
<td>A.30</td>
<td>Glass and Gypsum Wall Plan</td>
</tr>
<tr>
<td>A.31</td>
<td>Structural Columns plan</td>
</tr>
<tr>
<td>A.32</td>
<td>Beams plan</td>
</tr>
<tr>
<td>A.33</td>
<td>Stairs plan</td>
</tr>
<tr>
<td>A.34</td>
<td>Scrap Rebar in Demolition Process</td>
</tr>
<tr>
<td>A.35</td>
<td>Impact assessment disassembly Menara Tun Razak BEES V4.02 Characterization</td>
</tr>
<tr>
<td>A.36</td>
<td>Analyze Inventory disassembly Menara Tun Razak BEES V4.02 Characterization Global warming (g CO2 eq)</td>
</tr>
<tr>
<td>A.37</td>
<td>Analyze Inventory disassembly Menara Tun Razak BEES V4.02 Characterization Global warming</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>System boundary MENARA TUN RAZAK</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Describes the different fields of BIM in a Venn-diagram</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Increased pressure on the building process is resolved by using BIM technology (Eastman et al., 2011)</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Exterior Envelope Virtual Mock up for 3D Shop Drawing Review</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Respondent Occupations</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>BIM uses for the survey participants</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Demolition by Hand</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Abrasive Cutting</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>A tower crane</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Demolition by Machines</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>Volvo’s EC 460B high reach wrecker</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>(A) rebar shear (B) plate and tank shear</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>(A), (B) Hydraulic impact hammer in breking</td>
<td>34</td>
</tr>
<tr>
<td>2.13</td>
<td>Allied’s RC series hydraulic pulverizer</td>
<td>35</td>
</tr>
<tr>
<td>2.14</td>
<td>NPK’s hydraulic multi-processor</td>
<td>36</td>
</tr>
<tr>
<td>2.15</td>
<td>Demolition by Chemical Agents</td>
<td>36</td>
</tr>
<tr>
<td>2.16</td>
<td>Hand operated pressurized water jetting</td>
<td>37</td>
</tr>
<tr>
<td>2.17</td>
<td>Life –cycle of waste generation</td>
<td>40</td>
</tr>
<tr>
<td>2.18</td>
<td>Typical composition of construction and demolition waste.</td>
<td>41</td>
</tr>
<tr>
<td>2.19</td>
<td>Estimated total annual waste generation in the EU</td>
<td>41</td>
</tr>
<tr>
<td>2.20</td>
<td>The total waste generation distribution in percentages between different sources in the EU, EFTA, Croatia and</td>
<td>42</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.21</td>
<td>Building Waste Generation in IWOA</td>
<td>42</td>
</tr>
<tr>
<td>2.22</td>
<td>Total MSW Generation in 2010</td>
<td>43</td>
</tr>
<tr>
<td>2.23</td>
<td>Reducing construction and demolition (C&D) waste</td>
<td>45</td>
</tr>
<tr>
<td>2.24</td>
<td>Stages of a Life Cycle Assessment</td>
<td>47</td>
</tr>
<tr>
<td>2.25</td>
<td>Life Cycle Assessment Framework’</td>
<td>49</td>
</tr>
<tr>
<td>2.26</td>
<td>Elements of the LCIA phase</td>
<td>52</td>
</tr>
<tr>
<td>2.27</td>
<td>Structure of the Building for Environmental and Economic Sustainability (BEES) methodology (Source: PRé, 2008).</td>
<td>60</td>
</tr>
<tr>
<td>2.28</td>
<td>General representation of the Eco-indicator 99 methodology.</td>
<td>61</td>
</tr>
<tr>
<td>2.29</td>
<td>Structure of the Boustead Model</td>
<td>64</td>
</tr>
<tr>
<td>2.30</td>
<td>Projected surface temperature changes for the late 21st century (2090–2099) Temperatures are relative to the period 1980–1999</td>
<td>69</td>
</tr>
<tr>
<td>2.31</td>
<td>Indicator of the human influence on the atmosphere during the Industrial Era</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Case Study Menara Tun Razak Shematic View of Demolition Boundary</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>show the location of demolition site at Menara Tun Razak, Jalan Raja Laut, Kuala Lumpur</td>
<td>81</td>
</tr>
<tr>
<td>3.3</td>
<td>Front View (A)& Back view(B) of building</td>
<td>83</td>
</tr>
<tr>
<td>3.4</td>
<td>Left View (C) & Right View (D) of the Building</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>Bridge Spanning Between tower (E) & View of the 2 Storey Car BasementCar Park(F)</td>
<td>83</td>
</tr>
<tr>
<td>3.6</td>
<td>Demolition level3 and level 2</td>
<td>85</td>
</tr>
<tr>
<td>3.7</td>
<td>Demolition Level 1 and Level 2</td>
<td>85</td>
</tr>
<tr>
<td>3.8</td>
<td>Scaffolding System (A) & Installation Scaffolding System (B)</td>
<td>86</td>
</tr>
<tr>
<td>3.9</td>
<td>level 7/1 before Demolition (A) movement Excavator to Level 7/1(B)</td>
<td>86</td>
</tr>
<tr>
<td>3.10</td>
<td>The mini excavator hoist on top of the building to</td>
<td>87</td>
</tr>
</tbody>
</table>
demolish the M&E

3.11 hacking Level 7/1 by Hitachi EX100 (A) Hacking Level 7/1(B) 87

3.12 Compressor hammer for demolition bridge (A) Blade for cutting beams of bridge (B) 88

3.13 bladed beam (A) Demolition the Bridge (B) 88

3.14 Demolition of structural elements by hacking and pushing walls inwards starting from section CH EF progressively towards CH S at the other end of the building. 89

3.15 Demolition of structural elements by hacking and pushing walls inwards starting from section CH EF progressively towards CH S at the other end of the building. 89

3.16 Demolition is followed by weakening and exposing the rebar of the following level RC columns (A) & (B). 90

3.17 Collection Rebars (A) & (B) 90

3.18 Hydraulic Breakers 91

3.19 Torch and Cutting Rebars (A) & (B) 91

3.20 Collection Rebars on ground 92

3.21 plan from Demolition’s Consultant 96

3.22 plan of bridge between two buildings from construction consultant 96

3.23 (A) Day working of contractor & (B) Data measuring on Site 97

4.1 (A) & (B) HITACHI EX100 99

4.2 GHG emissions of HITACHI EX100 activity (g CO2 eq) 100

4.3 Sumitomo SH100 EX100 101

4.4 GHG emissions of Sumitomo SH100 EX100 activity (g CO2 eq) 101

4.5 (A) & (B) Sumitomo SH200 EX200 LH43 102

4.6 GHG emissions of Sumitomo SH100 EX100 activity (g 102
4.7 HITACHI EX200 LH16
4.8 GHG emissions of Hitachi EX200 LH16 activity (g CO2 eq) 103
4.9 HITACHI EX200 LH21
4.10 GHG emissions of HITACHI EX200 LH21 activity (g CO2 eq) 104
4.11 HITACHI EX220 LH11
4.12 GHG emissions of HITACHI EX220 LH11 activity (g CO2 eq) 105
4.13 (A) & (B) HITACHI EX300 D
4.14 GHG emissions of Hitachi EX300 D activity (g CO2 eq) 106
4.15 (A) & (B) HITACHI EX300 LH 42 R
4.16 GHG emissions of HITACHI EX300 LH 42 R activity (g CO2 eq) 107
4.17 HITACHI EX300 LH35 Y
4.18 GHG emissions of HITACHI EX300 LH35 Y activity (g CO2 eq) 108
4.19 (A) & (B) HITACHI EX300 R
4.20 GHG emissions of HITACHI EX300 R activity (g CO2 eq) 109
4.21 HITACHI EX450 R
4.22 GHG emission of HITACHI EX450 activity (g CO2 eq) 110
4.23 (A) & (B) Air compressor for hacking bridge
4.24 GHG emissions of air compressor activity (g CO2 eq) 111
4.25 (A)Generator (B) Water pump
4.26 GHG emissions of motor pump activity (g CO2 eq) 112
4.27 Map of Diesel Transportation
4.28 GHG emissions of lorry activity (g CO2 eq) for empty barrels 115
4.29 GHG emissions of lorry activity (g CO2 eq) for full barrels 115
4.30 GHG emissions of non-loading low boy activity (g CO2 116
4.31 GHG emissions of non-loading low boy activity (g CO2 eq)

4.32 (A) & (B) Transfer propping

4.33 GHG emissions of transport material activity Transport from site: (g CO2 eq)

4.34 GHG emissions of transport material Transport to site: (g CO2 eq)

4.35 GHG emissions of Forman Transportation activity (g CO2 eq)

4.36 Map of Rebar Transportation

4.37 (A) Lorry for Carry Reinforce Rebars (B) Preparation before loading Reinforce Rebars

4.38 Loading Reinforce Rebars

4.39 GHG emissions of rebar transportation activity (g CO2 eq)

4.40 Lorry for Aluminum Transportation

4.41 GHG emissions of aluminum transportation activity (g CO2 eq)

4.42 (A) Lorry for carry Debris & (B) Loading lorry

4.43 Landfill Area

4.44 GHG emissions of concrete debris transportation (g CO2 eq)

4.45 GHG emissions of brick debris transportation (g CO2 eq)

4.46 GHG emissions of mortar debris:transportation (g CO2 eq)

4.47 Emissions of glass debris transportation (g CO2 eq)

4.48 GHG emissions of gypsum debris transportation (g CO2 eq)

4.49 The percentage of Walls Area

4.50 Brick Dimension

4.51 (A) & (B) Masonry Wall
4.52 (A) & (B) Masonry Wall
4.53 Concrete Wall
4.54 Concrete Wall
4.55 (A) & (B) Concrete Wall
4.56 (A) & (B) Gypsum walls
4.57 (A) & (B) Glass Walls
4.58 (A) & (B) Glass Walls
4.59 Columns in Menara Tun razak Model
4.60 Reinforce Rebar in columns
4.61 Columns in Manara Tun Razak
4.62 structural beams Model of Menara Tun razak
4.63 Beams of Menara Tun Razak before Demolition
4.64 (A) & (B) Beams of Menara Tun Razak
4.65 (A) & (B) Beams of Menara Tun Razak
4.66 Comprising Quantity of Area, rebars weight and concrete volume
4.67 East view of slabs in model Menara Tun Razak
4.68 West view of slabs in model Menara Tun Razak
4.69 (A) Demolition slab (B) demolition slab of level 3/1
4.70 (A) Demolition Slabs of level 3 (B) Demolition slabs of levels 6/1, 5/1,4/1
4.71 (A) stairs structure & (B) Stairs between Levels
4.72 (A) Demolition ramp & (B) Demolition stairs
4.73 The kind of Reinforcement Rebar use in Menara Tun Razak
4.74 Reinforce Rebar Quantity
4.75 LCA Environmental impact
4.76 Analyzing Airborne emissions of demolition Menara Tun Razak
5.1 GHG in demolition process
5.2 Emission green gases between demolition and disposal process (gCO2eq)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-model</td>
<td>Geometrical model in three dimensions; length, height and width.</td>
</tr>
<tr>
<td>AEC</td>
<td>Architecture, Engineering and Construction</td>
</tr>
<tr>
<td>BIM</td>
<td>Building information modeling, the activity, when referring to a specific building information model the term “BIM model” is used.</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Costing</td>
</tr>
<tr>
<td>LCI</td>
<td>Life Cycle Inventory</td>
</tr>
<tr>
<td>LCIA</td>
<td>Life Cycle Impact Assessment</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia ()</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>A</td>
<td>Global Warming Potential and Acidification Potential in construction, use and demolition of building materials</td>
</tr>
<tr>
<td>B</td>
<td>Specification of CATERPILLAR excavators</td>
</tr>
<tr>
<td>C</td>
<td>Dimensions, specifications and details of all equipment were used in this study</td>
</tr>
<tr>
<td>D</td>
<td>Hitachi EX100 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>E</td>
<td>Sumitomo SH100 EX100 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>F</td>
<td>Sumitomo SH200 EX200 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>G</td>
<td>Hitachi EX200 LH16 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>H</td>
<td>Hitachi EX200 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>I</td>
<td>HITACHI EX220 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>J</td>
<td>HITACHI EX300 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td></td>
<td>Hitachi EX300 LH42 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>K</td>
<td>Hitachi EX300 LH35 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>L</td>
<td>Hitachi EX300 LH35 with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>M</td>
<td>Hitachi EX450 R with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>N</td>
<td>Air compressor with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>O</td>
<td>Motor pump with hours working and fuel consumption in Menara Tun Razak case study</td>
</tr>
<tr>
<td>P</td>
<td>Diesel Transportation</td>
</tr>
<tr>
<td>R</td>
<td>Schedule Lorry for Transportation Reinforcement Rebars</td>
</tr>
<tr>
<td>S</td>
<td>Schedule Lorry for Transportation Reinforcement Rebars</td>
</tr>
<tr>
<td>T</td>
<td>Lorry Schedule for transport debris</td>
</tr>
<tr>
<td>W</td>
<td>Masonry Wall data extraction from Revit structure software</td>
</tr>
<tr>
<td>X</td>
<td>Concrete Wall Plan</td>
</tr>
<tr>
<td>Y</td>
<td>Glass and Gypsum Wall Plan</td>
</tr>
<tr>
<td>Z</td>
<td>Structural Columns plan</td>
</tr>
<tr>
<td>AA</td>
<td>Beams plan</td>
</tr>
<tr>
<td>AB</td>
<td>Stairs plan</td>
</tr>
<tr>
<td>AC</td>
<td>Scrap Rebar in Demolition Process</td>
</tr>
<tr>
<td>AD</td>
<td>Impact assessment disassembly Menara Tun Razak BEES V4.02 Characterization</td>
</tr>
<tr>
<td>AE</td>
<td>Analyze Inventory disassembly Menara Tun Razak BEES V4.02 Characterization Global warming (g CO2 eq)</td>
</tr>
<tr>
<td>AF</td>
<td>Analyze Inventory disassembly Menara Tun Razak BEES V4.02 Characterization Global warming</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introductions

Housing is one of the most important needs of every human being. Without housing one would be exposed to adverse effects resulting from vagaries inherent in an environment. Exposure to bad weather would lead to ill health. Housing fosters the development of other industries. The building industry produces buildings for utilities, shops and communal facilities. Housing is also a tool for economic development.

Today, it is widely accepted that human activities are contributing to climate change. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) estimated that between 1970 and 2004, global greenhouse gas emissions due to human activities rose by 70 percent (IPCC, 2007). While the full implications of climate change are not fully understood, scientific evidence suggests that it is a causal factor in rising sea levels, increased occurrence of severe weather events, food shortages, changing patterns of disease, severe water shortages and the loss of tropical forests. Most experts agree that over the next few decades, the world will undergo potentially dangerous changes in climate, which will have a significant impact on almost every aspect of our environment, economies and societies.
In forty years we need to have reduced our greenhouse gas emissions by at least 50% to avoid the worst-case scenarios of climate change. In eleven years we need to have achieved at least a 25% reduction in emissions. In December 2009 the world’s nations are gathered in Copenhagen to negotiate an agreement on a new global protocol that will enable humanity to achieve the necessary global targets. The building sector contributes up to 30% of global annual greenhouse gas emissions and consumes up to 40% of all energy. Furthermore, 41% of the total energy consumption in the U.S. is emitted 38% of greenhouse gas emissions. Given the massive growth in new construction in economies in transition, and the inefficiencies of existing building stock worldwide, if nothing is done, greenhouse gas emissions from buildings will more than double in the next 20 years. Therefore, if targets for greenhouse gas emissions reduction are to be met, it is clear that people must tackle emissions from the building sector. Mitigation of greenhouse gas emissions from buildings must be a cornerstone of every national climate change strategy (USDOE, 2011).

Of the many environmental impacts of development, the one with the highest profile currently is global warming, which demands changes from government, industry and public. Concerns about the local and global environment situation are rising all over the world. Global warming is the consequence of long term buildup of greenhouse gases (CO2, CH4, N2O, etc.) in the higher layer of atmosphere. The emission of these gases is the result of intensive environmentally harmful human activities such as the burning of fossil fuels, deforestation and land use changes (Buchanan and Honey, 1994)This is generally accepted to be the reason that average global temperatures have increased by 0.74 °C in the last 100 years. Global temperatures are set to rise by a further 1.1 °C in a low emissions scenario, and by 2.4 °C in a high emissions scenario, by the end of the century. It is necessary to reduce Green House Gases (GHG) emissions by 50% or more in order to stabilize global concentrations by 2100 (Houghton et al., 2001)The Tyndall Centre has suggested that a 70% reduction in CO2 emissions will be required by 2030 to prevent temperature rising by more than 1 °C (Bows et al., 2006).
There are many methods available for assessing the environmental impacts of materials and components within the building sector. Life cycle assessment (LCA) is a tool used for the quantitative assessment of a material used, energy flows and environmental impacts of products. It is used to assess systematically the impact of each material and process. LCA is a technique for assessing various aspects associated with development of a product and its potential impact throughout a product’s life (i.e. cradle to grave) from raw material acquisition, processing, manufacturing, use and finally its disposal (ISO, 1997).

1.2 Background of Research

Nowadays there is a growing concern for sustainability. This has led to a change in the otherwise economic approach to resource consumption accounting. In recent years, the tendency has been to use structural optimization criteria to reduce the environmental impact involved in all life cycle stages. Any optimization of design for sustainability should be conducted in accordance with the ISO 14040 standards, which require that an appropriate boundary and scope be set and justified (ISO 1998). Reducing CO2 emissions is one of the most widely used criteria, since data related to the environmental impact of most construction materials have been compiled by distinct organizations (e.g. Goedkoop and Spriensma 2001; Catalonia Institute of Construction Technology 2009)

In design paradigms, trade-offs are made among alternative solutions aimed to optimize building performance for various objectives. On the other hand, environmental objectives are diverse, complex, inter-connected, and usually conflicting. Reducing impacts on one problem (e.g., global warming) may increase impacts on another (e.g., solid waste generation). In order to reach the aim of improving the building performance and decrease destructive effects on global warming, performance of a building material, product, or system should be optimized. It is necessary to weight global warming impacts, normalize sources of
similar impacts, and calculate the total environmental performance in order to select the most preferable alternative. Hence a comprehensive assessment system is required to assess confidently the environmental performance of a particular design.

Building Materials and Component Combinations (BMCC) nearly two thirds of the studies listed in Table 1.1 Relate to materials and components. Materials are naturally found in impure form, e.g., in ores, and extraction or purification not only consumes energy but also produces waste (Asif et al., 2007). Many industrialized countries have made steps towards environmental improvement of the construction process, building occupation and demolition, and these steps differ to the extent that building construction is strongly determined by local traditions, local climate and locally available natural resources. As a result, many LCA studies calculating the environmental impacts of BMCC have been done during the last fifteen years.

Researchers have compared timber to other framing materials in buildings. Borjesson et al. compared CO2 emissions from the construction of a multi-storey building with a timber or concrete frame, from life-cycle and forest land-use perspective. The primary energy input (mainly fossil fuels) in the production of materials was found to be about 60-80% higher when concrete frames were considered instead of timber frames (2000). Lenzen et al. analyzed the timber and concrete designs of the same building in terms of its embodied energy using an input-output based hybrid framework instead of the process analysis Borjesson used. Their estimations of energy requirements and greenhouse gas emissions were double (2002). Gustavsson et al. studied the changes in energy and CO2 balances caused by variation of key parameters in the manufacture and use of the materials in a timber- and a concrete-framed building. Considered production scenarios, the materials of the timber-framed building had lower energy and CO2 balances than those of the concrete-framed building in all cases but one (2006).
Table 1.1 Published LCAs applied within the building sector within the last 15 years

<table>
<thead>
<tr>
<th>Reference</th>
<th>BMCC</th>
<th>WPC</th>
<th>Content, country and year</th>
<th>Environmental impacts studied (see footnote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardente et al.</td>
<td>x</td>
<td></td>
<td>LCA of a solar thermal collector, Italy (2005)</td>
<td>En, A, E, OD, HT, EC, W, RS, O, AR, HT, W</td>
</tr>
<tr>
<td>Junnila and Horvath</td>
<td>x</td>
<td></td>
<td>LCA of a high end office building in Finland (2003).</td>
<td>En, A, E, OD, HT, EC, W, RS, O, AR, HT, W</td>
</tr>
<tr>
<td>Nyman and Simonsen</td>
<td>x</td>
<td></td>
<td>LCA of residential ventilation units over a 50 year life-cycle in Finland (2005)</td>
<td>En, A, E, OD, HT, EC, W, RS, O, AR, HT, W</td>
</tr>
</tbody>
</table>

Abbreviations: WPC, whole process construction; BMCC, building and materials components combinations. Impact categories: En, energy consumption; GW, global warming potential; OD, photochemical ozone creation; WC, water consumption; DA, depletion of a biotic resource; A, acidification; HT, human toxicity; W, waste creation; EC, eco-toxicity; E, eutrophication; EL, energy consumption; RS, resources consumption; O, others; AR, air emissions. Source:(Ortiz et al., 2009)

Xing et al. compared a steel-framed office building in China with a concrete-framed one. The life-cycle energy consumption of the building materials ‘per area‘ in the steel-framed building is 24.9% that of the concrete-framed building, whereas, in the usage phase, the energy consumption and emissions of steel-framed building are both larger than those of concrete-framed building. As a result, the energy consumption and environmental emissions achieved by the concrete-framed building
over its whole life-cycle is lower than the steel-framed one (2008). Asif et al. calculated the CO2 emissions of eight construction materials for a dwelling in Scotland timber, concrete, glass, aluminum, slate, ceramics tiles, plasterboard, damp course and mortar. The study concluded that 61% of the embodied energy used in the house was related to concrete. Timber and ceramic tiles comes next with 14% and 15%, respectively, of the total embodied energy. Concrete was responsible for 99% of the total of CO2 emissions of the home construction, mainly due to its production process (Asif et al., 2007). Nebel et al. studied the environmental impacts of wood floor coverings manufactured in Germany, and held analyses to help the industry partners to improve their environmental performance and use the results for marketing purposes. The study did not aim to compare products, but to produce an LCI and find the environmental impacts of this industry (2006).

Conservation of energy becomes important in the context of limiting GHG emission into the atmosphere, and reducing costs of materials (Venkatarama Reddy and Jagadish, 2001), and the embodied energy payback period should always be one of the criteria used for comparing the viability renewable technologies (Wilson and Young, 1996). To promote environmental impact reduction the European Commission released the integrated product policy (IPP) (2003), which aimed to enhance the life-cycle of products. The life-cycle of most construction products is long and involves many complicated procedures and stake holders (e.g., designer, manufacturer, assembly, construction, marketing, sellers, and final users).

Many researchers have been interested in studying the environmental benefits of using recycled, reused or recyclable, reusable materials in the building industry. A study by Erlandsson et al. set a new method for reused materials, and confirmed that using reused materials is better for the environment than building with new, their case study data showing a reduction in environmental impact by up to 70% (2004). Selecting durable and renewable materials could also be an alternative for grouping materials, as well as recycling, reusing and recovering materials for optimum waste disposal (Sun et al., 2003). A study comparing plastics to wood and concrete in Swedish dwellings found that although plastics were only 1%–2% by weight, their manufacturing energy was 18%–23% of the entire amount required for the three dwellings (Adalberth, 1997). Researchers classified building materials in different
ways. For example, Asif et al. categorized them into main families, i.e., stone, concrete, metals, wood, plastics and ceramics (Asif et al., 2007). Junnila and Horvath studied the significant environmental aspects of a new high-end office building with a life span of over 50 years. In this study functional unit is considered as 1 kWh/m2/year and location of study was at Southern Finland (Northern Europe). The LCA performed here had three main phases inventory analysis for quantifying emissions and wastes, impact assessment for evaluating the potential environmental impacts from the inventory of emissions and wastes, and interpretation for defining the most significant aspects. In this study life cycle of a building was divided into five main phases; building materials manufacturing, construction process, use of the building, maintenance, and demolition. GHG emissions were estimated to be 48,000 ton CO2eq/m2.50yr. (Junnila S and A., 2003)

Four of the studies listed in Table 1.2 deal with dwellings. Adalberth studied the energy use during the life-cycle of three single-unit dwellings, built in Sweden in 1991 and 1992 (1997). The houses were prefabricated and timber framed. The study emphasized the importance of LCA, to gain an insight into the energy use for a dwelling in Sweden. The functional unit was m2 of usable floor area (i.e., gross area minus walls area), and the study assumed a 50 years life-span. The life-spans of different building components and materials were collected from the maintenance norm of the Organization for Municipal Housing Companies in Sweden to estimate how many times each would be replaced during the life of the dwelling. The study showed that the difference between percentage energy and percentage by weight for materials (e.g., the concrete used was 75% by weight of the whole, while the energy used to produce it is only 28% of the production energy of the whole dwelling). Adalberth performed a sensitivity analysis on the building material data, energy use and electricity mix, which had been discovered to be of a greatest environmental burden. This study concluded that the greatest environmental impact (70%–90%) occurs during the use phase. Approximately 85% and 15% of energy consumption occurs during the occupation and manufacturing phases, respectively (Adalberth, 1997).

A study carried out in France as part of the EQUER project (evaluation of environmental quality of buildings) considered different phases of dwelling's life-cycle, using the functional unit of m2 living area, with the sensitivity analyses based
on alternative building materials, types of heating energy, and the transport distance of the timber. This study showed that the dwellings with greatest environmental impact were not those whose area is larger, and emphasized the importance of choosing materials with low environmental impact during the pre-construction phase (i.e., employing LCA as a decision making supporting tool during the design stage) (Adalberth, 1997).

Involving the recycling potential scenarios within the life-cycle of low energy dwellings had been studied by Thormark, for energy efficient apartment housing in Sweden. Over a 50 year life-span, embodied energy accounted for 45% of the total energy requirement, and about 37%–42% of this embodied energy could be recovered through recycling (2002). In a Japanese urban development case study, Jian et al. suggested that to reduce life-cycle CO2 emissions timber dwellings were preferred to other materials, and that open spaces such as parks and green areas should be maximized to work as a breathing lung inside the development (Jian et al., 2003).

In terms of LCA for offices Scheuer et al. studied a new university building (75 years life-span, six storeys, and 7,300 m2 area, in USA). They identified 60 building materials and showed that the operational energy amounted to 97.7% of the whole energy consumption, which can be explained by the long life-span. The energy of the demolition phase was only 0.2%. The study translated the energy consumed in the life-cycle into environmental impacts—global warming 93.4%, nitrification potential 89.5%, acidification 89.5%, ozone depletion potential 82.9%, and soil categories waste generation 61.9%. Data were taken from Simapro, Franklin associates, DEAMTM, and the Swiss Agency for the Environment, Forests and Landscape. The study emphasized the need for data on unusual performance characteristics, or detailed evaluations of building features in the design stage, which they say is impossible with current building data (Scheuer et al., 2003).

Guggemos and Horvath compared environmental effects of steel and concrete framed buildings using LCA. Two five-storey buildings with floor area of 4400 m2 were considered which were located in the Midwestern US and were expected to be used for 50 years. In this study two methods, process based LCA and EIO-LCA,
were used to evaluate life-cycle environmental effects of each building through different phases: material manufacturing, construction, use, maintenance and demolition phase. The results showed that concrete structural-frame had more associate energy use and emissions due to longer installation process (2005). Blengini performed LCA of building which was demolished in the year 2004 by controlled blasting. The adopted functional unit used in the current case-study was 1 m2 net floor area, over a period of 1 year. This residential building was situated at Turin (Italy). In this study demolition phase and its recycling potential were studied. The life cycle impact assessment (LCIA) phase was initially focused on the characterisation and six energy and environmental indicators were considered, GER (Gross Energy Requirement), GWP, ODP (Ozone Depletion Potential), AP, EP and POCP (Photochemical Ozone Creation Potential). SimaPro 6.0 (2004) and Boustead Model 5 (Boustead I, 2004). were used as supporting tools in order to implement the LCA model and carried out the results. The results demonstrated that building waste recycling is not only economically feasible and profitable but also sustainable from the energetic and environmental point of view (Blengini, 2009).

Scheuer et al. performed LCA on a 7300 m2 six-storey building whose projected life was 75 years at SWH (Sam Wyly Hall). The building is located on the University of Michigan Campus, Ann Arbor, Michigan, US. LCA has been done in accordance with EPA (Environmental Protection Agency), SETAC (Society for Environmental Toxicity And Chemistry), and ISO standards for LCA (Vigon BW, 1993; ISO, 1997). Primary energy consumption, GWP, ODP, NP (nitrification potential), AP, and solid waste generation were the impact categories considered in the life cycle environmental impacts from SWH. An inventory analysis of three different phases: Material placement, Operations and Demolition phase was done. Results showed that the optimization of operations phase performance should be primary emphasis for design, as in all measures, operations phase alone accounted for more than 83% of total environmental burdens (Scheuer et al., 2003).
While carbon is a motivation for policy of BIM, the connections between digital technologies and sustainability are not well developed in policy and practice. There is however research activity that is beginning to develop new tools to use BIM in order to address a range of sustainability concerns. Russell-Smith and Lepech (2012), for example, develop an activity based method for lifecycle assessment, through modeling and benchmarking of building construction. The sustainability concerns addressed by such tools include: the assessment of environmental impacts (Lu et al., 2012); consideration of waste management issues (O'Reilly, 2012; Rajendran and Gomez, 2012) guidance to designers on environmental issues(Capper et al., 2012; Firoz and Rao, 2012; Geyer, 2012; Hetherington et al., 2012; Kanter et al., 2012; Mirani and Mahdjouri, 2012) and a response to a government strategy for carbon reductions in both current and future building stock (McAuley et al., 2012).

Recent studies were also examining the use of BIM throughout the lifecycle of construction projects, addressing and looking at the life-cycle of particular materials such as concrete(Borrmann et al., 2012). There are also a few studies on
renovation and on reconstruction and on waste management and minimization (O'Reilly, 2012; Rajendran and Gomez, 2012; Yeheyis et al., 2012)

There is also a literature that sets out frameworks for guidance of quantity surveyors there were expectations that this work will be changed by the widespread use of BIM and consideration of how these activities can be achieved through the new tools.

1.3 Problem Statement

Since 1751 approximately 337 billion tons of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid-1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from cement production (377 million metric tons of carbon in 2007) have more than doubled since the mid-1970s and now represent 4.5% of global CO2 releases from fossil-fuel burning and cement production. Gas flaring, which accounted for roughly 2% of global emissions during the 1970s, now accounts for less than 1% of global fossil-fuel releases. (Boden et al., 2010)

The over-dependence on fossil fuels and over-exploitation of earth’s natural resources has now become obstructions for sustainable development in many countries. Global energy related emissions of CO2 are anticipated to rise from 20.9 billion t in 1990 to 28.8 billion t in 2007. It is then projected to reach 34.5 billion t in 2020 and 40.2 billion t in 2030, an average growth rate of 1.5% per year. Moreover,
Kyoto Protocol announced significant portions of CO2 emitted by the United States (22%), China (18%), E.U. (11%), Russia (6%), India (5%), and Japan (5%). Furthermore, The European Union has agreed upon climate targets to decrease the emissions of greenhouse gases by 20% by 2020 and 50% by 2050 compared with the 1990 level (International Energy Agency, 2009) (United Nations 2007) (European Commission)

Comprising data from CDIAC in 2000 and 2007 are shown significant issue. Rank of Malaysia decreased from 69 in 2000 with 5.4 metric tons of CO2 per capita to 57 in 2007 with 7.3 metric tons of CO2 per capita. This trend shows that Fuel consumption in Malaysia had increased rapidly since 2000 until 2007.

Nowadays there is a growing concern for sustainability. This has led to a change in the otherwise economic approach to resource consumption accounting. In recent years, the tendency has been to use structural optimization criteria to reduce the environmental impact involved in all life cycle stages. Any optimization of design for sustainability should be conducted in accordance with the ISO 14040 standards, which require that an appropriate boundary and scope be set and justified (ISO 1998). Reducing CO2 emissions is one of the most widely used criteria, since data related to the environmental impact of most construction materials have been compiled by distinct organizations (Goedkoop and Spriensma, 2001).

Also the construction industry is one of the main contributors towards the development of Malaysia, providing the necessary infrastructure and physical structures for activities such as commerce, services and utilities. The industry generates employment opportunities and injects money into a Malaysian’s economy by creating foreign and local investment opportunities (Agung, 2010). However, despite these contributions, the construction industry has also been linked to global warming, environmental pollution and degradation. Due to the alarmingly decreasing land for construction, Malaysia is calling for the use of developed sites and conversions of existing buildings to meet current demands. Therefore on a broad spectrum, demolition can be predicted to be playing a major role in future nation building. Deconstruction, waste of this process and unsustainable tools, are also linked to the adverse environmental impacts of the construction industry.
1.4 Aim of Research

The aim of this study is to calculate the generation of GHG per 1 square meters in reinforced concrete building in Malaysia. This study is done by determining the crucial processes that contribute to the total GHG impacts during the demolition and waste disposal include landfill treatment that used diesel as the main source of energy.

1.5 Objective of Research

The objectives for this case study:
1. To identify the methods and processes of a demolition.
2. To analyze the relevant contribution of Building Information Modeling’s Tool (revit structure software) to accurate estimation materials produced after deconstruction.
3. To measure the relevant plant’s fuel consumption on demolition and waste disposal phase, and calculation GWP of activities by simapro software as the tools for LCA.
4. To evaluate the GHG per square meter of the case study subject and weight of materials that were demolished and under wastage treatment.
1.6 Scope of Research

The scope of the LCA mostly consists of the functional unit, the system boundary, allocation procedures, data requirements and assumptions or limitations. The functional unit of the study was defined as 1 square meter gross floor area of Menara Tun Razak building.

The boundary of this study includes the stages of the demolition and waste disposal. In order to suit the objective of the study and based on the system boundary, the study only focus on emissions that contribute to the greenhouse effects from demolition site including emissions from activities, which consist of fuel. Figure 1.1 shows the general outline of inventories involved in the study.

Moreover for LCA database is chosen Ecoinvent 2.01 version (2007) of this research. Datasets are offered for a Swiss (CH) and a European (RER) supply situation also BEES V4.02 as impact assessment methodology to assess the environmental impact. The Bees methodology uses the environmental problems approach that was developed by the society for environmental toxicology and chemistry (SETAC). Therefore, this study was focused on LCA of fuel used and
GHGs emission based on the demolition and wastage scenario in case study Menara Tun Razak in Kuala Lumpur.
REFERENCES

BDH (1998). Building Department Hong Kong Code of Practice for Demolition Hong Kong.

Construction equipment guide. Com." Retrieved 8 January, 2013, from

Oriented Method for Life Cycle Impact Assessment, Methodology Report

Assessment Method Which Comprises Harmonised Category Indicators at the
Midpoint and the Endpoint Level, Report I: Characterisation (First Edition),
Vrom, Holland."

Contamination: An Imperial Legacy?" Ecotoxicology and Environmental
Science: pp. 55.

Guggemos AA, Horvath A (2005). "Comparison of Environmental Effects of Steel-
and Concrete-Framed Buildings." Journal of Infrastructure Systems 11(2):

Balances of Wood and Concrete Building Materials." Build Environ 41:
pp. 940-951.

Hammond, G. et al. (2006). Inventory of Carbon and Energy (Ice). Beta,
University of Bath.

Construction Managers and Bim Based Scheduling. Degree of Master of
Science in Civil Engineering, WORCESTER POLYTECHNIC INSTITUTE.

Hetherington, R., R. and Laney, et al. (2012). "Zone Modelling and Visualisation:
Keys to the Design of Low Carbon Buildings."

Report (Tar) the Scientific Basis, the Summary for Policymakers."
Cambridge University Press: Cambridge, UK.

for Sustainable Construction BRE.

NORBERG, ANDRÉ (2012). Implementing Building Information Modeling within the Railway Sector Master of Science Department of Civil and Environmental
Engineering Division of GeoEngineering Road and Traffic Research Group
CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg.

Pommer, K. et al. (2001). "Handbog I Miljovurdering Af Produkter, Miljonyt Nr. 58, Kobenhavn.".

UNEP (1991). Phase 1: Initial Surveys and Preliminary Assessment. UN Inter-agency Plan of Action for the ROPME Region Oceans and Coastal Areas Programme Activity Centre, UNEP. UNEP. Nairobi, Kenya, UNEP.

