Universiti Teknologi Malaysia Institutional Repository

Electronic band structure and optical parameters of spinel SnMg 2O 4 by modified Becke - Johnson potential

Yousaf, Masood and Saeed, Mohammad Alam and Mat Isa, Ahmad Radzi and Shaari, Amiruddin and Rahnamaye Aliabad, H. A. (2012) Electronic band structure and optical parameters of spinel SnMg 2O 4 by modified Becke - Johnson potential. Chinese Physics Letters, 29 (10). pp. 1-5. ISSN 0256-307X

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1088/0256-307X/29/10/107401

Abstract

The electronic band structure and optical parameters of SnMg 2O 4 are investigated by the first-principles technique based on a new potential approximation known as modified Becke - Johnson (mBJ). The direct band gap values by LDA, GGA and EV-GGA are underestimated significantly as compared to mBJ-GGA, which generally provides the results comparable to the experimental values. Similarly, the present band gap value (4.85 eV) using mBJ-GGA is greatly enhanced to the previous value by EV-GGA (2.823 eV). The optical parametric quantities (dielectric constant, index of refraction, reflectivity, optical conductivity and absorption coefficient) relying on the band structure are presented and examined. The first critical point (optical absorption's edge) in SnMg 2O 4 occurs at about 4.85 eV. A strong absorption region is observed, extending between 5.4 eV to 25.0 eV. For SnMg 2O 4, static dielectric constant 1(0), static refractive index n(0), and the magnitude of the coefficient of reflectivity at zero frequency R(0) are 2.296, 1.515 and 0.0419, respectively. The optoelectronic properties indicate that this material can be successfully used in optical devices.

Item Type:Article
Uncontrolled Keywords:static dielectric constant, optoelectronic
Subjects:Q Science > QC Physics
Divisions:Science
ID Code:33518
Deposited By: Fazli Masari
Deposited On:28 Aug 2013 09:34
Last Modified:30 Nov 2018 14:37

Repository Staff Only: item control page