PERCEPTION OF TRIANGULATED STRUCTURE SYSTEM IN HIGH-RISE BUILDING DESIGN

ABOLGHASEM BASSIR

A thesis submitted in fulfilment of the requirements for the award of the Master of Architecture

Faculty of Built Environment
Universiti Teknologi Malaysia

SEPTEMBER 2012
To my beloved wife and my lovely children for their sincere help and companion
during my studies
ACKNOWLEDGEMENT

I would like to thank my supervisor Prof. Dr. Mohd Hamdan Bin Haji Ahmad for his valuable suggestions, guidance and consistent support throughout this thesis. My thanks are also due to the members of staff of Architecture Department, and Faculty of Built Environment, Universiti Teknologi Malaysia, who contributed to my research.
ABSTRACT

Design of a high-rise building, like any architectural design, is a complex multidisciplinary process with the objective to discover, detail and construct a system to fulfil a given set of performance requirements. In the past decade, significant developments in architectural expression, and increasing demand for lighter and taller buildings resulted in a systematic evolution of structural systems. The developments in the steel industry contributed to the structural efficiency of these new framing concepts. The main design criteria for tall buildings are governed by the lateral stiffness in order to resist wind and earthquake forces. Many countries in the world are exposed to destructive forces of nature like tsunamis, earthquakes and tornados. Considering these factors, construction which can deal with natural disasters is needed for the new generation of structure and Architecture. Although structural engineers have come up with solutions for these criteria, still the numbers of massive concrete structures are the limit for architects to design more efficient space in plan and forms. This research presents a different description of huge triangle frame as a mega structural system for optimal structural design. This structure system provides capability to design a more diverse high rise in terms of shape and forms. The highlighted advantages and disadvantages of this structure system, is compared to the other routine structural systems. Therefore four different buildings are chosen to be compared in terms of criteria involved in high rise design. The efficiency of the comparison of this structural system is the main concern of this research. While this study focuses on high rise buildings, the proposed structural system for the conceptual design is directly applicable to any type of architectural design and objective related criteria.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Problem Statement of Topic 1
1.2 History and Development 1
1.3 Space Triangle Frame Structure 2
1.4 High Rise Buildings and Mega Structure 2
1.5 Research Questions 2
1.6 Research Aim 3
1.7 Research Objectives 3
1.8 Scope of the Research 3
1.9 Research Methodology in Brief 4
1.10 Organization of Thesis 4

2 LITERATURE REVIEW

2.1 History of High Rise Building 5

2.2 Historical Background of the Structure of High-rise Buildings

2.3 Demands on High-rise Structures

2.3.1 General

2.3.2 Vertical Loads

2.3.3 Horizontal Loads

2.3.4 Unexpected Deflections

2.3.5 Wind Loads

2.3.6 Earthquake Loads

2.4 The Basic Materials: Steel and Concrete and their Combinations

2.4.1 General

2.4.2 Steel Reinforced Concrete

2.4.2.1 Normal-strength Concrete

2.4.3 High-strength Concrete

2.4.4 Lightweight Concrete

2.4.5 Combined Systems

2.5 Systems of Reinforcement

2.5.1 General

2.5.2 Fundamental Principles of Reinforcement

2.5.3 Rigid Frames

2.5.4 Braced Frames

2.5.5 Simple Diagonal Bracing (Alternative a)

2.5.6 X-bracing (Alternative b)

2.5.7 K-bracing (Alternative c)

2.5.8 Shear Walls, Coupled Walls and Cores

2.5.9 Tube Structures

2.5.10 Exterior Concrete Tubes

2.5.11 Steel Rigid Frame Tubes

2.5.12 Braced Frame Tubes

2.5.13 Bundled Tube Structures

2.5.14 Core-outrigger Structures

2.6 Load-bearing Systems for Floors
3 RESEARCH DESIGN AND METHODOLOGY

3.1 Introduction

3.2 The Methodological Approach

3.3 Methodology Adopted in the Research

3.4 Research Techniques

3.4.1 Field Observation Technique

3.4.2 Questionnaire Technique

3.4.3 Focused Interview Technique

3.5 Data Collection Procedure

3.5.1 Questionnaire Design

3.6 Survey Procedure

3.7 Data Processing

3.8 Review

4 CASE STUDIES

4.1 Introduction

4.2 Trump International Centre

4.3 Aon Centre

4.4 John Hancock Centre
5 PERCEPTION OF MEGA SPACE TRIANGLE FRAME STRUCTURE IN HIGH RISE DESIGN 85

5.1 Introduction 85
5.2 Personal Particular of Respondent 85
5.3 Physical Qualities That Promote Mega Space Frame from Respondent Perspective 88
 5.3.1 Form and shape of High-rise 88
 5.3.2 Simplify and Creativity in Terms of Design a Floor Plan 92
 5.3.3 More Option to Design volume in High-rise 95
5.4 Preference to Choosing Mega Space Frame in Term of Structural System Benefit and Its Influence to High-rise Design 96
 5.4.1 Architect and Civil Engineers Background of Mega Space Frame 97
 5.4.2 Ability for Prefabrication 100
 5.4.3 Stability 102
 5.4.4 Diversity in Form and Shape 104
 5.4.5 Well Maintained, Safe and Secure 105
5.5 Preference of Using Mega Space Frame Structural System in Terms of Construction of High-rise 106
5.6 Interview Summary 109
 5.6.1 Prof. Dr. Mahmood Golabchi 109
 5.6.2 Prof. Dr. Ali Kaveh 110

6 DISCUSSION AND CONCLUSIONS 113

6.1 Introduction 113
6.2 Implications 116
6.3 Further study & Recommendations 116

REFERENCES 117

APPENDIX 119-130
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Traffic loads in offices</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of various building materials</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Sample size required for various sampling at 95% confidence level</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>Status of responder * Gender</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>Educational back ground</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Professional experience</td>
<td>86</td>
</tr>
<tr>
<td>5.4</td>
<td>What is your main concern in design process?</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>How much is the structure system important to you in 1st stage design?</td>
<td>87</td>
</tr>
<tr>
<td>5.6</td>
<td>Have you ever heard about mega space frame structures before?</td>
<td>88</td>
</tr>
<tr>
<td>5.7</td>
<td>This system is able to make harmony between form and environment</td>
<td>89</td>
</tr>
<tr>
<td>5.8</td>
<td>Has more efficiency in order of form in High-rise</td>
<td>90</td>
</tr>
<tr>
<td>5.9</td>
<td>This system is able to make harmony between form and Technology</td>
<td>91</td>
</tr>
<tr>
<td>5.10</td>
<td>Has more efficiency in terms of form in floor plans</td>
<td>92</td>
</tr>
<tr>
<td>5.11</td>
<td>Create innovation and creativity in Architecture</td>
<td>93</td>
</tr>
<tr>
<td>5.12</td>
<td>I would prefer to use this system to simplify floor plans design</td>
<td>94</td>
</tr>
<tr>
<td>5.13</td>
<td>I would prefer to use this system to have unlimited space</td>
<td>95</td>
</tr>
<tr>
<td>5.14</td>
<td>I feel free to design any shape and volume for building</td>
<td>96</td>
</tr>
<tr>
<td>5.15</td>
<td>More popular than the other systems</td>
<td>97</td>
</tr>
<tr>
<td>5.16</td>
<td>Well-known by structural engineers</td>
<td>98</td>
</tr>
<tr>
<td>5.17</td>
<td>Well-known by the architects</td>
<td>99</td>
</tr>
<tr>
<td>5.18</td>
<td>Has Innovation and creativity in structure</td>
<td>100</td>
</tr>
</tbody>
</table>
5.19 Has ability for prefabrication 101
5.20 More stable in high-rise structure 103
5.21 More stable against Wind load and earth quake 103
5.22 Has ability to use different joints and connections 103
5.23 More efficient system in terms of form in high-rise structure 104
5.24 A lot more diversity in form and shape 104
5.25 Very well maintained and managed 105
5.26 Safe and secure 106
5.27 This system is one of the best structural system for what I like to design 106
5.28 Ability for use in high-rise construction 107
5.29 No other structure system can compare with this system in terms of construction method 108
5.30 Increase construction speed and reduce processing time 108
5.31 Reduce construction cost 108
5.32 Has more efficiency in construction Items 109
5.33 The questions and the responses from Prof, Dr. Mahmood Golabchi & Prof, Dr. Ali Kaveh-1 (G: Dr M. Golabchi and K: Dr. A. Kaveh) 110
5.34 The questions and the responses from Prof, Dr. Mahmood Golabchi & Prof, Dr. Ali Kaveh-2 111
5.35 The questions and the responses from Prof, Dr. Mahmood Golabchi & Prof, Dr. Ali Kaveh-3 112
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Behaviour of high-rise structure under lateral loading</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Connection detail, interior columns of the Fair Building, Chicago, 1892, architect.: William Le Baron Jeney</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>a) Monadnock Building, Chicago and b) Section through base of the Monadnock Building.</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Columns as various steel composites: a) concrete in filled steel sections, b) steel sections partially encased in concrete and c) steel sections fully encased concrete (Golabchi, 2008)</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Breakdown of costs for vertical and horizontal load removal</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Unstable and stable arrangements of structural stiffening elements</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Influence of core positioning on horizontal loading</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Bending and shear drift of walls and frames with equivalent system (El_{equ}-equivalent bending rigidity, GA_{equ}-equivalent shear rigidity)</td>
<td>21</td>
</tr>
<tr>
<td>2.9</td>
<td>Different arrangements of frame bracing, with and without openings</td>
<td>23</td>
</tr>
<tr>
<td>2.10</td>
<td>Different forms of diagonal branching</td>
<td>24</td>
</tr>
<tr>
<td>2.11</td>
<td>Braced frame of the Empire State Building</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Interaction of shear walls and frames, coupled by non-rigid connections (Golabchi, 2010)</td>
<td>28</td>
</tr>
</tbody>
</table>
2.13 Rigid beam coupling of two shear walls and stresses in the beams M_1, M_2: reverse bending moments, N: normal forces in columns

2.14 View and ground plan of the Main tower, Frankfurt, architects: Schweger + Partner, structure: Burggraft, Weichinger + Partner, and Forster + Sennewald

2.15 View and ground plan, a design for the new Zurich Versicherung high-rise, Frankfurt, architects: Christoph Mackler, Structure: Bollinger+Grohmann

2.16 Distribution of normal stress in box grid, without (left) and with (right) shear-lag effect

2.17 a) Messeturm Frankfurt, ground plan b) Moment distribution in interior and perforated façade of the Messeturm

2.18 John Hancock Centre, Chicago, architect: SOM/Fazlur Khan

2.19 a) and b) View of bracing system of the Citicorp Centre, New York, architectures: The Stubbins Associates and Emery Roth & Sons, c) Oscillation damper in Citicorp Centre

2.20 a) Sears Tower, Chicago, architects: SOM/Bruce Graham and Fazlur Khan, b) isometric view, structure of Sears Tower, Chicago

2.21 Action of outrigger structures: a) Core-outrigger system without loading, b) deformation without influence of outrigger, c) deformation with reverse rotation caused by outrigger

2.22 Outrigger on the 5th story (machine floor) of the Main tower, Frankfurt

2.23 Ground plan PETRONAS Tower, interior core and mega columns, Kuala Lumpur, architects
2.24 View, section and ground plan Jin Mao Building, Shanghai, architects: SOM 43

2.25 Ground plan and isometric view Millennium Tower, Frankfurt, architects: AS & P, structure: Bollinger+Grohmann 44

2.26 Thermo active flat-slab flooring in reinforced concrete, Deutsche Post AG, Bonn, architects: Murphy/John, Chicago 46

2.27 Floor site cast concrete with griders 46

2.28 Floor with suspender beams 47

2.29 Composite floor with steel griders 48

2.30 Composite floor constructing with bearing trapezoid decking and concrete topping 49

2.31 Complex composite floor construction in the Commerce bank high-rise, Frankfurt 49

2.32 Haunched floor with space for installations. View and section, preliminary design for Wasthafen tower, Frankfurt 50

2.33 Prestressing element without composite in a flat-slab floor 51

2.34 Flat-slab floor without displacement bodies (Bubbledeck System) 52

2.35 Diagonal reinforcement cross, new Post Tower, Bonn, architects: Murphy/Jahn, Chicago 53

2.36 Steel Composite walls, Commerzbank Frankfurt, architects: Foster and Partners, London 54

2.37 (a-c) Reduction of column cross section and compressive reinforcement by increasing the grade of concrete 55

2.38 Steel composite columns with interior steel core, Westhafen Tower, Frankfurt 56
2.39 Millennium Tower, project in Tokyo Bay, architects: Foster and partners, London, Obayashi Corporation, Tokyo, model: detail and view

4.1 Examples of triangular structures and compositions that can be found in the nature

4.2 Triangles can create a triangular pyramid that is simple but at the same time ultimately stable structure

4.3 Triangles can be seen in old and modern structures in the world

4.4 Combinations of different pyramids frame structures

4.5 Some of Application of space frames

4.6 Geometric different pattern frames structure

4.7 Some of triangle frame structure in different scales

4.8 Space Frame Structures were made by currently available materials

4.9 Some old and modern places in normal cube shapes

4.10 Five Pyramids structures in one Cube

4.11 Two triangles/pyramids

4.12 Innovation in structure design

4.13 Few different concepts of designing

4.14 Mega Space Frame Bending design sample, UN

4.15 Application of composite materials

4.16 Space framed edge of the pyramid

4.17 Approximate area of each floor equals 950 square meters. Floors are connected through 16 lifts and two staircases located at the central axis structure

4.18 Mega Space Frame structure for high rise architecture

4.19 Mega Space Frame structure for high rise architecture

4.20 Trump International Centre

4.21 Aon centre

4.22 John Hancock Centre

4.23 Some notable tall structures around the world

5.1 Harmony between form, environment and technology
5.2 Efficiency in order of form in high-rise building 90
5.3 Harmony between form and technology 91
5.4 Efficiency in terms of form in floor plans 92
5.5 Create innovation and creativity in Architecture 93
5.6 Using this system to simplify floor plans design 94
5.7 Using this system to have unlimited space 95
5.8 Feeling free to design any shape and volume for building 96
5.9 More popular than the other systems 98
5.10 Well-known by structural engineers 99
5.11 Well-known by the architects 100
5.12 Innovation and creativity in structure 101
5.13 Ability for prefabrication 102
5.14 A lot more diversity in form and shape 105
5.15 This system is one of the best structural system for what I like to design 107
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>QUESTIONNAIRES</td>
<td>119</td>
</tr>
<tr>
<td>B</td>
<td>RESUME OF INTERVIEWEE</td>
<td>129</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Problem Statement of Topic

Nowadays architecture is designed in simple shapes, cube form and geometrical volume. This is caused by structure system in a building, we must follow structure to achieve design forms. This is a time for the rejuvenation of architectural forms, shapes and space. In some countries there is earthquake problem, which need a structural system that can give better resistance against earthquake and ensure a stable building.

By using space triangle frame as a mega structure system we can delete column in our architecture and by combination of this space frame modules we can design fractal forms and shape. There are three main factors that are studied during this research. These are as follows:

1.2 History and Development

There has been considerable research over the last few years on structure, also there are some researches about basic structure, and how it works. How human beings found the usage of structure, and how engineers make buildings with grid structure. The conclusions of these independent surveys carried out in the building industries studied how the best combinations of using structure system criteria may be evolved. The needs of the users (as opposed to the designers, buildings, or
managers) of a building are paramount. In many organizations, the wages cost forms a significant part of the total costs. To achieve real 'value for money for its owners, and optimum conditions for its users, attention must be paid to user experience.

1.3 Space Triangle Frame Structure

This is one of the important structure system (space frames) on which regulations are based, as well as developing understanding of these research areas, the module should enable the architect to develop or adapt tests for novel situations, and for purposes of monitoring and evaluation of building effectiveness.

1.4 High Rise Buildings and Mega Structure

In this research the high-rise building and usage of mega structure issues relevant to the building industry will be covered. The patterns of changing structure system in the production of materials and equipment as well as materials. Building form, mass, internal layout and orientation all characterize how a building will react to airflow, heat, loads, and earthquake.

1.5 Research Questions

The key research questions are:

i) How did space triangle frame structure system, help to build stable building, without huge size of column, large amount of steels and heavy structure?

ii) What difference does it make by using space triangle frame as a mega structure in high-rise form and shape?
1.6 Research Aim

The aim of this research is to identify appropriateness of triangle space frame as a mega structure in high-rise structure system and the ability of changing form and shape.

1.7 Research Objectives

i) To establish the importance of space frame in mega structures.

ii) To create innovation in architectural space through space triangle frame development in mega structure.

iii) To establish perception of new approach for architecture using space frame.

1.8 Scope of the Research

It has been claimed that `structure' is always divided into two categories that is physical and efficient which relates physical safety to the design aspect, an architecture where the efficient aspect of the perception of mega structure mention associates to the architecture. It is agreeable to his claim as refer to both dictionaries; it suggested space frame as having both qualities.

This definition leads to the understanding of the space triangle frame design that could promotes physically - which could be accessed by the way architect design a building, as well as efficiency in that design (Fazlur Khan, 2006). Although architectural designer such as planner and architects practiced established theories. Related to this in the design of mega structure especially for the high rise, is however, in the end, the architects who will determine the success of the design.
This research will only focused on the space frame as a mega structure because this method is the efficient way for designing high rise buildings. This space frame form distinguished itself from other types via its size, form, efficient, function the other buildings that are known. This research also examines the influence of space frame as a mega structure in high-rise architecture and while the architect used to design by other structural methods.

1.9 Research Methodology in Brief

i) Studies on theories and hypotheses, books and published essays on the matter and extract shared and contradicted ideas and taking advantage of different comments.

ii) Field study involving questionnaires and interview.

iii) Case study

iv) Examining into known objective standards for those elements that constitute a Space triangle frame development in mega structure to create innovation in architectural space.

1.10 Organization of thesis

The first chapter discusses the introduction of thesis and research work. Chapter two discusses various literature reviewed that make up the background of this research. The following chapter three presents the methodology adopted for this research. Chapter four presents the case studies of mega structures, while chapter five discusses the analysis of findings of this research. Chapter six presents the conclusion.
REFERENCES

Interview with Prof Dr Mahmood Golabchi. University of Tehran, Iran
Interview with Prof Dr Ali Kaveh. Iran University of Science & Technology (IUST)
Kaveh, A. and Servati, H. (2006a). Neural Networks for the Analysis and Design of
Kaveh, A. and Servati, H. (2006b). Neural Networks for the Analysis and Design of
Building and Housing Research Centre. 35-39.
Engineering and Computational Mechanics. 161. 139-195.
Taylor, R. S., Wright, P. J. F. (1996). Information discussion. How can research help
construction methods? ICE Proceedings. 34. 707-711.