MODIFICATION OF POLYETHERSULFONE INCORPORATED WITH POLYVINYLPYRROLIDONE-IODINE VIA PHASE INVERSION AND ULTRAVIOLET PHOTO-GRAFTING FOR ANTIBACTERIAL APPLICATIONS

DEVANAI A/P KANNAN

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical
Universiti Teknologi Malaysia

October 2012
ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the strength and good health in completing my thesis. I would like to express my sincere gratitude and appreciation to my supervisor, Dr Abdul Halim Bin Mohd Yusof for all his support and guidance throughout the completion of this project.

My sincere appreciation and special thank to Mr Yakoob Sabudin for his assistance, support and help throughout the completion of my lab work. I am grateful to my senior, Khairul Anuar for his guidance and assistance towards the accomplishment of the project. My special thank to my dear friend, Nur Dianaty for her sincere help, support and encouragement throughout the year.

Last but not least, my utmost appreciation to my parents, brothers and sisters for their love, support and motivation. Thank you for the support and everything done for me, I would not be here without encouragement from you.
ABSTRACT

Incorporation of antibacterial agents into polymeric membrane is one the widely studied surface modification. Polyethersulfone (PES) membrane incorporated with polyvinylpyrrolidone-iodine (PVP-I) were prepared using phase inversion and UV induced photo-grafting techniques. The modified PES-PVP-I membranes were characterized in term of gravimetric analysis, FT-IR analysis, FESEM analysis, water flux, contact angle, porosity measurement and antibacterial effect against Escherichia coli (E.coli) and Bacillus subtilis (B.subtilis). The high water flux indicated by PES-4 and PES-7 show an improvement by the addition of PVP-I by 52 % to 62% higher compared to original PES membrane. For the UV method, the water flux decline with the increasing of irradiation time by 31 to 35% compared to the commercial original PES membrane. PES-PVP-I membranes with 10 wt% of iodine concentration developed by phase inversion and UV photo-grafting show strong antibacterial properties using halo zone test. The highest inhibition zone of PES-PVP-I membranes produced using UV photo-grafting and phase inversions against E.coli were 2.30cm² and 1.88cm² and against B.subtilis were 0.41cm² and 0.48cm². The results indicated that both methods used were favorable towards antibacterial properties with high inhibition zone and as well as in the improvement in water flux, contact angle and porosity of PES-PVP-I membranes compared to the original PES. This study shows that PES-PVP-I membrane suitable to be used in wide variety of antibacterial applications.
ABSTRAK

Kemasukan antibakteria ke dalam membran polimer adalah modifikasi permukaan yang luas dikaji. Pengubahsuai permukaan polyethersulfone (PES) membran menggunakan polyvinylpyrrolidone-iodine (PVP-I) disediakan dengan menggunakan penukaran fasa dan melalui sinaran ultraviolet (UV) photografting teknik. PES-PVP-I membran yang diubahsuai diuji dari segi gravimetriik analisis, FT-IR analisis, FESEM analisis, ketelapan air, keseimbangan isi air, keporosan dan keberkesanan antibakteria dinilai terhadap *Escherichia coli* (*E.coli*) dan *Bacillus subtilis* (*B.subtilis*). Ketelapan air yang tinggi ditunjukkan oleh PES-4 dan PES-7 menunjukkan peningkatan dengan penambahan PVP-I sebanyak 52% hingga 62% lebih tinggi daripada PES membran asal. Dengan kaedah UV, ketelapan air menurun dengan peningkatan masa sinaran sebanyak 31% hingga 35% berkurangan berbanding PES membran asal. PES-PVP-I membran dengan kepekatan 10 wt% iodin dibentuk menggunakan fasa penukaran dan sinaran UV menunjukkan ciri-ciri antibakteria yang tinggi. Zon perencatan yang tertinggi dihasilkan melalui sinaran UV dan fasa penukaran terhadap *E.coli* adalah 2.30cm² dan 1.88cm² dan *B.subtilis* adalah 0.41cm⁻¹ dan 0.48cm⁻¹. Kedua-dua teknik menunjukkan ciri-ciri antibakteria menggalakkan dengan zon perencatan yang tinggi dan juga pengubah PES-PVP-I membran dari segi ketelapan air, keseimbangan air dan keporosan berbanding PES asal. Ini menunjukkan ia sesuai digunakan untuk pelbagai aplikasi antibakteria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**

1.1 Research Background 1
1.2 Problem Statement 5
1.3 Objective of the study 6
1.4 Scope of research 6

2 **LITERATURE REVIEW**

2.1 Membrane Definitions 8
2.2 Membrane Classifications 10
2.3 Membrane Processes 11
2.4 Antibacterial Membrane 13
 2.4.1 Current Progress in Antibacterial Membrane 14
2.5 Method of Development and Modification of membrane 18
 2.5.1 Phase Inversion 18
 2.5.2 UV-Induced Surface Graft Polymerization 21
2.6 Materials Used 24
 2.6.1 Polyethersulfone (PES) 24
 2.6.2 Polyvinylpyrrolidone-Iodine (PVP-I) 25
2.7 Antimicrobial activity of PVP-I 28
2.8 Applications of Membrane 29

3 MATERIAL AND METHODS
 3.1 Material 30
 3.2 Equipment 31
 3.3 Preparation of Polyethersulfone (PES) Membrane 32
 3.3.1 Dope preparation for the phase inversion method 32
 3.3.2 Casting of membrane 33
 3.3.3 Preparation of commercial PES for UV photo-grafting 34
 3.3.4 Surface photo-grafting of PVP onto PES membrane 34
 3.3.5 Immersion in Iodine Solution 35
 3.4 Characterizations of PES-PVP-I Membranes 37
 3.4.1 Degree of Modifications (DM) 37
 3.4.2 Fourier Transform Infrared Spectroscopy (FT-IR) Analysis 38
3.4.3 Morphology of membranes 38
3.4.4 Water Flux 39
3.4.5 Contact angle (CA) 40
3.4.6 Porosity 41
3.4.7 Antibacterial activity test 41
 3.4.7.1 Preparation of culture medium 41
 3.4.7.2 Preparation of membrane antibacterial test 42

4 RESULTS AND DISCUSSION
4.1 Introduction 44
4.2 Grafting analysis of PVP 45
4.3 Morphology study 50
4.4 Water Flux 54
4.5 Contact angle 59
4.6 Porosity 61
4.7 Antibacterial activity test 63

5 CONCLUSION
5.1 Overall conclusion 68
5.2 Future recommendations 69

REFERENCES 70-79

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of PVP-I properties and use (International Specialty Products., 2004)</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Equipment used for the development and characterization of membranes</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Compositions of casting solution</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Compositions of membrane and time exposure to UV</td>
<td>35</td>
</tr>
<tr>
<td>4.1</td>
<td>Degree of Modifications of PES-PVP at different time</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Iodine weight percent of EDX result</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Water flux, contact angle and porosity test of membranes developed via phase inversion</td>
<td>54</td>
</tr>
</tbody>
</table>
4.4 Water flux, contact angle and porosity test of original PES and membranes developed via UV by 5 minute exposure

4.5 Water flux, contact angle and porosity test of membranes developed via UV by 10 minute exposure

4.6 Water flux, contact angle and porosity test of membranes developed via UV by 15 minute exposure

4.7 Halo zone test against E.coli and B.subtilis of the unmodified and PES-PVP (2%-I membranes developed via phase inversion

4.8 Halo zone test against E.coli and B.subtilis of the unmodified and PES-PVP (5%-I membranes developed via phase inversion

4.9 Halo zone test against E.coli and B.subtilis of the unmodified and PES-PVP-I membranes via UV photografting
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Separation process by membrane (Rosmainiza, 2008)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Type of membrane process with different pore diameter (Richard, 2004)</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Mechanism of formation of phase inversion membranes: a) solution 1; b) solution 2; c) primary gel; d) secondary gel; e) air-solution interface; f) skin (Kesting, 1985)</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Mechanism of UV-irradiation and graft polymerization of a PES membrane (Zhang et al., 2009).</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical structure of Polyethersulfone (Cao et al., 2010)</td>
<td>24</td>
</tr>
<tr>
<td>Section</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical structure of Polyvinylpyrrolidone-iodine (Zamora, 1986)</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of methodology by UV photo-grafting</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic of contact angle (Goddard et al., 2007)</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>The inhibition circle calculation (Takanobu et al., 2000)</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>FT-IR spectra of a.) Commercial PES membrane b.) Grafted PES-PVP (15min grafting) c.) Grafted PES-PVP (10min grafting) d.) Grafted PES-PVP (5min grafting)</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>FESEM image of a.) 200x cross section of PES b.) 200x cross section PVP flat sheet membrane, c.) 200x cross section of PES-PVP(2%)-I(10%), d.) 200x cross section of PES-PVP(5%)-I(10%), e.) 200x cross section of commercial PES f.) 200x cross section of PES-PVP-I modified via UV</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

BP Benzophenone
CA Contact angle
EDX Energy Dispersive X-ray
FESEM Field Emission Scanning Electron Microscopy
FT-IR Fourier Transform Infrared Spectroscopy
I Iodide
I$_2$ Iodine
IO$^-$ Hypoiodite
KBr Kalium Bromide
L Liter
MF Microfiltration
MW Molecular Weight
NA Nutrient agar
NF Nanofiltration
NMP N-methyl-2-pyrrolidone
PES Polyethersulfone
PS Polysulfone
PVP Polyvinylpyrrolidone
PVP-I Polyvinylpyrrolidone-Iodine
RO Reverse Osmosis
UF Ultrafiltration
UV Ultraviolet
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>EDX spectrum of Iodine (a.) Phase Inversion Membrane (b.) UV modified membrane</td>
<td>80</td>
</tr>
<tr>
<td>A.2</td>
<td>FESEM image of a.)200x cross section of PES b.)1000x cross section of PES, c.)200x cross section of PES-PVP(2%)-I(10%), d.) 1000x cross section of PES-PVP(2%)-I(10%), e.)200x cross section of PES-PVP(5%)-I(10%), f.)200x cross section of PES-PVP (5%)-I(10%), g.) 200x cross section of commercial PES h.) 1000x cross section of commercial PES, i.) 200x cross section of PES-PVP-I modified via UV, j.) 1000x cross section of PES-PVP-I modified via UV</td>
<td>81</td>
</tr>
</tbody>
</table>
A.3 Antibacterial activity PES-PVP-I membrane produced via phase inversion against *E.coli* a.) PES-1 (original PES) b.) PES-2 (PES-PVP(2 wt%)-I(2 wt%), c.) PES-3 (PES-PVP(2 wt%)-I(5 wt%), d.) PES-4 (PES-PVP(2 wt%)-I(10 wt%), e.) PES-5 (PES-PVP(5 wt%)-I(2 wt%), f.) PES-6 (PES-PVP(5 wt%)-I(5 wt%) and g.) PES-7 (PES-PVP(5 wt%)-I(10 wt%).

A.4 Antibacterial activity PES-PVP-I membrane produced via phase inversion against *B.subtilis* a.) PES-1 (original PES) b.) PES-2 (PES-PVP(2 wt%)-I(2 wt%), c.) PES-3 (PES-PVP(2 wt%)-I(5 wt%), d.) PES-4 (PES-PVP(2 wt%)-I(10 wt%), e.) PES-5 (PES-PVP(5 wt%)-I(2 wt%), f.) PES-6 (PES-PVP(5 wt%)-I(5 wt%) and g.) PES-7 (PES-PVP(5 wt%)-I(10 wt%).

A.5 Antibacterial activity of PES-PVP-I membranes modified via UV photo-grafting against *E.coli* a.) PES-8 (original PES) b.) PES-9 (PES-PVP-I(2 wt%), c.) PES-10 (PES-PVP-I(2 wt%), d.) PES-11 (PES-PVP-I(2 wt%), e.) PES-12 (PES-PVP-I(5 wt%), f.) PES-13 (PES-PVP-I(5 wt%)) g.) PES-14 (PES-PVP-I(5 wt%)) h.) PES-15 (PES-PVP-I(10 wt%)) i.) PES-16 (PES-PVP-I(10 wt%)) j.) PES-17 (PES-PVP-I(10 wt%))
A.6 Antibacterial activity of PES-PVP-I membranes modified via UV photo-grafting against *B. subtilis*
 a.) PES-8 (original PES)
 b.) PES-9 (PES-PVP-I(2 wt%))
 c.) PES-10 (PES-PVP-I(2 wt%))
 d.) PES-11 (PES-PVP-I(2 wt%))
 e.) PES-12 (PES-PVP-I(5 wt%))
 f.) PES-13 (PES-PVPI(5 wt%))
 g.) PES-14 (PES-PVP-I(5 wt%))
 h.) PES-15 (PES-PVP-I(10 wt%))
 i.) PES-16 (PES-PVP-I(10 wt%))
 j.) PES-17 (PES-PVP-I(10 wt%))

A.7 Halo zone test results
 a.) Halo zone test against *E.coli* and *B.subtilis* of the unmodified and PES-PVP-I membranes developed via phase inversion
 b.) Halo zone test against *E.coli* and *B.subtilis* of the unmodified and PES-PVP-I membranes via UV photo-grafting
REFERENCES

Astaire, J.C (2002). *Microfiltration and Supercritical Fluid Extraction of Buttermilk to Concentrate Biological Lipid Messengers*. Master of Science, Faculty of the Agricultural Sciences Department California Polytechnic State University, San Luis Obispo.

