LEVULINIC ACID PRODUCTION FROM LIGNOCELLULOSIC BIOMASS USING HY ZEOLITE SUPPORTED CHROMIUM CATALYST IN IONIC LIQUID

NAZLINA BINTI YA’AINI

UNIVERSITI TEKNOLOGI MALAYSIA
LEVULINIC ACID PRODUCTION FROM LIGNOCELLULOSIC BIOMASS USING HY ZEOLITE SUPPORTED CHROMIUM CATALYST IN IONIC LIQUID

NAZLINA BINTI YA’AINI

A thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

DECEMBER 2012
To my beloved husband, mother and children
for their Love, Prayer and Support

“So, verily, every difficulty, there is relief.
Verily, with every difficulty, there is relief”
(Al-Inshirah 94:5-6)
This thesis has been accomplished by the accumulation of successes and failures of my Master research. Thanks to ALLAH S.W.T because of HIS guidance and blessing, finally I can fulfil my Master research successfully. In general, my deepest thanks and appreciations to those who are giving me a lot of supports and ideas to make my research targets accomplished.

Firstly, I would like to thank my supervisor, Prof. Dr. Nor Aishah Saidina Amin for her continuous guidance and support throughout this research work. Her critical comments and deep thoughts have encouraged me to look deep insights into my research and brushed up my experimental results. Besides, she taught me lots of understanding in preparing international journal papers. In the future, this knowledge will be very useful for me especially when I involve in the academic world. My deep pleasure also to my co-supervisor, Prof. Dr. Salasiah Endud for her introduction to the zeolite world, deep taught in catalysis and productive discussions on the application of the solid acid catalyst in this research. Besides, I wish to express my appreciation to Chemical Reaction Engineering Group (CREG, UTM) and Centre of Excellence for Catalysis Science and Technology (PutraCAT, UPM) for their co-operation, support and pleasant friendship while I was doing my research work. Special thanks for those who have helped me in the experimental works. To Prof. Dr. Taufiq Yun Hin (UPM), Dr. Tye Ching Thian (USM), Puan Zulita, Puan Zainab and Encik Latfi, thank you very much for helping me in the analysis of products and characterization of biomass and catalysts. Last but not least, I would also like to gratefully acknowledge the financial support in the form of National Science Fellowship (NSF) by the Ministry of Science and Technology (MOSTI). Thanks a lot to my beloved family and friends for their support, love and prayer.
ABSTRACT

Levulinic acid is a sugar-derived building block that can be produced from biomass feedstock as an alternative to the petrochemical resources. The purpose of this study was to investigate the performance of HY zeolite supported chromium catalysts in producing levulinic acid from glucose, cellulose and lignocellulosic biomass before it was further optimized using response surface methodology (RSM). The catalysts comprising of different weight ratios of CrCl₃ and HY zeolite (1:1, 1:2 and 2:1) were synthesized using wetness impregnation method. Characterization of the catalysts using XRD, BET, FT-IR, TGA, NH₃-TPD and FT-IR of adsorbed pyridine demonstrated the catalytic reaction of the catalysts was predominantly influenced by type (Lewis acid), amount and strength of acid sites, surface area, hierarchical porous structures and shape selectivity of the catalysts. Experimental results showed that the CrC₃/HY–1:1 catalyst exhibited the highest catalytic performance with 62% levulinic acid yield at reaction temperature, 160 ºC and reaction time, 180 min. Optimization of levulinic acid was conducted using the potential CrC₃/HY–1:1 catalyst and ionic liquid, [EMIM][Cl] was introduced as a solvent for the cellulose conversion to levulinic acid. At optimum process conditions, 55.2%, 46.0%, 15.5% and 15.0% of levulinic acid yields were produced from glucose, cellulose, empty fruit bunch (EFB) and kenaf. Meanwhile, in the presence of ionic liquid under the same process conditions, 20.0% and 17.0% of levulinic acid yields were produced from EFB and kenaf. In addition, the compositions of EFB and kenaf were determined to compute the highest theoretical levulinic acid yields in the samples feedstock and the efficiencies of the catalytic process. This study demonstrated that the combination of the proposed catalyst with ionic liquid has potential to be applied in biomass conversion to levulinic acid under adequate process conditions.
ABSTRAK

Asid levulinik adalah blok binaan daripada gula yang boleh dihasilkan daripada biojisim sebagai satu alternatif kepada sumber petrokimia. Tujuan kajian ini adalah untuk menyiasat prestasi pemangkin zeolit HY disokong oleh kromium dalam menghasilkan asid levulinik daripada glukosa, selulosa dan lignoselulosa sebelum ia dioptimumkan menggunakan kaedah gerak balas permukaan (RSM). Pemangkin dengan nisbah berat CrCl3 dan zeolit HY yang berbeza (1:1, 1:2 dan 2:1) telah disintesis menggunakan kaedah impregnasi basah. Pencirian pemangkin menggunakan XRD, BET, FT-IR, TGA, NH3-TPD dan FT-IR piridin terjerap menunjukkan tindakbalas oleh pemangkin dalam menghasilkan asid levulinik telah dipengaruhi oleh jenis asid (Lewis asid), jumlah kekuatan asid, luas permukaan pemangkin, struktur hirarki liang dan sifat pemilihan bentuk oleh pemangkin. Ujikaji menunjukkan pemangkin CrC3/HY–1:1 telah menghasilkan asid levulinik tertinggi dengan hasil sebanyak 62% pada suhu tindak balas, 160 ºC dan masa tindak balas, 180 min. Pengoptimuman hasil asid levulinik telah diuji menggunakan pemangkin yang berpotensi, CrC3/HY–1:1 dan cecair ionik, [EMIM][Cl] telah diperkenalkan sebagai pelarut dalam penukaran selulosa kepada asid levulinik. Pada keadaan proses optimum, 55.2%, 46.0%, 15.5% dan 15.0% asid levulinik telah dihasilkan daripada glukosa, selulosa, tandan kosong (EFB) dan kenaf. Sementara itu, 20.0% dan 17.0% asid levulinik telah dihasilkan daripada EFB dan kenaf dalam keadaan proses yang sama dengan kehadiran cecair ionik. Disamping itu, komposisi EFB dan kenaf telah ditentukan untuk mengira penghasilan asid levulinik tertinggi secara teori daripada sampel biojisim dan menguji kecekapan proses pemangkin. Kajian ini menunjukkan bahawa kombinasi pemangkin yang disarankan dengan cecair ionik mempunyai potensi untuk diaplikasikan dalam penukaran biojisim kepada asid levulinik di bawah keadaan proses yang mencukupi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxi</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**
1.1 Research Background
1.2 Problem Statement
1.3 Research Objectives
1.4 Research Scopes
1.5 Thesis Outline
1.6 Research Significance

2 **LITERATURE REVIEW**
2.1 Biorefinery Processing Perspective

2.2 Levulinic Acid
 2.2.1 Levulinic Acid Production 16
 2.2.2 Synthesis and Mechanisms of Levulinic
 Acid 18
 2.2.3 Application and Derivatives of Levulinic
 Acid 21

2.3 Lignocellulosic Biomass Feedstock 21
 2.3.1 Fractionation of Lignocellulosic Biomass 24
 2.3.1.1 Cellulose 24
 2.3.1.2 Hemicellulose 25
 2.3.1.3 Lignin 25
 2.3.2 Availability of Lignocellulosic Biomass
 in Malaysia 26
 2.3.2.1 Empty Fruit Bunch 28
 2.3.2.2 Kenaf 30

2.4 Levulinic Acid Production Processes 31
 2.4.1 Homogeneous Acid Catalysis 32
 2.4.2 Heterogeneous Acid Catalysis 34
 2.4.3 Ionic Liquids and Catalysis 37
 2.4.3.1 Ionic Liquids Perspective 37
 2.4.3.2 Imidazolium Salts 40
 2.4.3.3 Ionic Liquids in Biomass
 Processing 42
 2.4.3.4 Acid Catalysis in Ionic Liquids 44

2.5 Factors Influence the Levulinic Acid Production 45
2.6 Catalytic Processes 46
2.7 Characterization of Catalysts 48
2.8 Summary 49

3 METHODOLOGY 52
 3.1 Overall Research Methodology 52
 3.2 Materials 57
 3.2.1 Raw Materials 57
3.2.2 Chemicals 58
3.3 Experimental Procedures 59
 3.3.1 Catalyst Preparation 59
 3.3.2 Catalyst Characterization 60
 3.3.2.1 Crystallinity 60
 3.3.2.2 Surface Area and Porosity 60
 3.3.2.3 Infrared Spectroscopy 61
 3.3.2.4 Thermal Gravimetric Analysis 61
 3.3.2.5 Acidity 61
 3.3.3 Catalyst Screening 62
 3.3.4 Design of Experiment 63
 3.3.5 Characterization of Biomass 63
3.4 Product Analysis 64

4 LEVULINIC ACID PRODUCTION FROM GLUCOSE USING HY ZEOLITE SUPPORTED CHROMIUM CATALYSTS 66
 4.1 Introduction 66
 4.2 Characterization of Catalysts 67
 4.2.1 Physical Properties of Catalysts 67
 4.2.1.1. Crystallinity 67
 4.2.1.2. Surface Area and Porosity 69
 4.2.2 Chemical Properties of Catalysts 72
 4.2.2.1. Infrared Spectroscopy 72
 4.2.2.2. Thermal Gravimetric Analysis 73
 4.2.2.3. Acidity 75
 4.2.2.4. Infrared Spectroscopy of Adsorbed Pyridine 78
 4.3 Catalytic Performance 80
 4.4 Summary 91

5 OPTIMIZATION OF LEVULINIC ACID PRODUCTION FROM LIGNOCELLULOSIC
BIOMASS VIA RESPONSE SURFACE METHODOLOGY

5.1 Introduction 92
5.2 Response Surface Methodology 93
 5.2.1 Two-level Factorial Design 93
 5.2.2 Central Composite Design 94
5.3 Levulinic Acid Production from Glucose 96
 5.3.1 Statistical Analysis 96
 5.3.2 Variable Effects on the Responses 102
 5.3.3 Optimization 107
5.4 Levulinic Acid Production from Cellulose 108
 5.4.1 Statistical Analysis 108
 5.4.2 Variable Effects on the Response 112
 5.4.3 Optimization 115
5.5 Levulinic Acid Production from Lignocellulosic Biomass 118
 5.5.1 Determination of Biomass Feedstock Compositions 119
 5.5.2 Utilization of Lignocellulosic Biomass 122
5.6 Summary 127

6 CONCLUSIONS AND RECOMMENDATIONS 128
 6.1 Conclusions 128
 6.2 Recommendations 130

REFERENCES 133
 Appendices A–C 146–162
 Conferences and Publications 163
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical properties of levulinic acid (Girisuta, 2007)</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical analysis of selected lignocellulosic sources (Rackemann and Doherty, 2011)</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>The estimated quantity of lignocellulosic biomass produced in Malaysia in the year 2007</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical compositions of lignocellulosic biomass in Malaysia (Goh et al., 2010c)</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Levulinic acid production via homogenous acid catalysis</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Levulinic acid production via heterogeneous acid catalysis</td>
<td>36</td>
</tr>
<tr>
<td>2.7</td>
<td>Selected properties of ionic liquids (Olivier-Bourbigou et al., 2010)</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Structural and crystallinity analyses of catalysts</td>
<td>69</td>
</tr>
<tr>
<td>4.2</td>
<td>Surface area and porosity of catalysts</td>
<td>71</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Acidity of catalysts determined using NH₃-TPD measurement</td>
<td>77</td>
</tr>
<tr>
<td>5.1</td>
<td>Experimental range and levels for the independent variables</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental design for the independent variables and coded values</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental design and analysis results of glucose</td>
<td>97</td>
</tr>
<tr>
<td>5.4</td>
<td>Analysis of Variance (ANOVA) for quadratic models</td>
<td>100</td>
</tr>
<tr>
<td>5.5</td>
<td>Predicted analysis of levulinic acid yield at optimum process conditions</td>
<td>107</td>
</tr>
<tr>
<td>5.6</td>
<td>Predicted and observed values of the levulinic acid yield at optimum process conditions</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Experimental design and analysis results of cellulose</td>
<td>109</td>
</tr>
<tr>
<td>5.8</td>
<td>Analysis of variance (ANOVA) for quadratic model</td>
<td>111</td>
</tr>
<tr>
<td>5.9</td>
<td>Predicted analysis of levulinic acid yield at optimum process conditions</td>
<td>116</td>
</tr>
<tr>
<td>5.10</td>
<td>Predicted and observed values of the levulinic acid yield at optimum process conditions</td>
<td>116</td>
</tr>
<tr>
<td>5.11</td>
<td>Acid catalyzed production of levulinic acid from cellulose</td>
<td>118</td>
</tr>
<tr>
<td>5.12</td>
<td>Composition of empty fruit bunch and kenaf</td>
<td>121</td>
</tr>
<tr>
<td>5.13</td>
<td>Acid catalyzed production of levulinic acid from various biomass resources and catalysts</td>
<td>124</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Potential bio-based derived products from biomass feedstocks (Werpy and Petersen, 2004)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Levulinic acid as a platform chemical for various potential uses of products (Rackemann and Doherty, 2011)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Simplified reaction scheme for the conversion of the biomass to levulinic acid (Fang and Hanna, 2002)</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Raw materials basis of chemical industry in historical perspective (Lichtenthaler and Peters, 2004)</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic stages of a biorefinery concept (Girisuta, 2007)</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Bio-based chemical products from biomass based feedstocks (Pike and Hertwig, 2008)</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Levulinic acid (Girisuta, 2007)</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical conversion of cellulose to levulinic acid (major product), formic acid (minor product) and tars (minors condensation products) in the Biofine process (Hayes et al., 2008)</td>
<td>17</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Typical reaction pathways for glucose conversion to levulinic acid (Takagaki et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Acid-catalyzed decomposition of hexose sugar to levulinic acid (Wang et al., 2011a; Hayes et al., 2008; Girisuta, 2007)</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Biomass-derived feedstocks and platforms for conversion to biofuels and chemicals (Alonso et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Lignocellulosic biomass network (Ahmadzadeh and Zakaria, 2007)</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>The cellulose network [A: Cellulose chain and B: inter and intra H-bonds present in cellulose] (Olivier-Bourbigou et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Acid-catalyzed decomposition of lignocellulosic biomass</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Evolution of ionic liquid generations (Olivier-Bourbigou et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Main cations and anions (Olivier-Bourbigou et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Imidazoles (a) and general structure of imidazolium (b) (Hu et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Examples of imidazolium salt ILs for the dissolution of cellulose (Liebert and Heinze, 2008)</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Dissolution mechanism of cellulose in ILs (Feng and Chen, 2008)</td>
<td></td>
</tr>
</tbody>
</table>
2.17 Acid-catalyzed of cellulose in ionic liquid (Tao et al., 2011b) 45

2.18 Overview of study based on the literature reviews 51

3.1 Overall Research Methodology 53

3.2 Research methodology diagram for part one 54

3.3 Research methodology diagram for part two 55

3.4 Research methodology diagram for part three 56

3.5 Empty fruit bunch 57

3.6 Kenaf 58

3.7 Wetness impregnation method (Xiao and Mao, 1995) 59

3.8 Levulinic acid production flow chart 62

3.9 HPLC profile of the distribution products 65

4.1 XRD patterns of catalysts (*, pattern of Cr$_2$O$_3$ phase) 68

4.2 FT-IR spectra for HY zeolite and CrCl$_3$/HY catalysts 73

4.3 TG and DTG analysis of catalyst samples 74

4.4 NH$_3$-TPD profiles of catalysts; (a) HY zeolite, (b) CrCl$_3$/HY–1:1, (c) CrCl$_3$/HY–1:2, (d) CrCl$_3$/HY–2:1 76

4.5 FT-IR spectra of adsorbed pyridine of catalysts; (a) HY 79
zeolite, (b) CrCl₃/HY–1:1, (c) CrCl₃/HY–1:2, (d) CrCl₃/HY–2:1

4.6 Levulinic acid yield versus reaction temperature at 60 min of reaction time

4.7 Products yields versus reaction temperature at 180 min of reaction time for a) CrCl₃/HY–1:1, b) CrCl₃/HY–1:2 and c) CrCl₃/HY–2:1 catalysts

4.8 Glucose conversion and selectivity of levulinic acid versus reaction temperature at 180 min of reaction time for a) CrCl₃/HY–1:1, b) CrCl₃/HY–1:2 and c) CrCl₃/HY–2:1 catalysts

4.9 Proposed reaction scheme of glucose for levulinic acid production by using the CrCl₃/HY catalyst

4.10 The catalytic performance of catalysts versus hierarchy factor at 160 °C and 180 min of reaction temperature and time for HY–(HY zeolite); H11–(CrCl₃/HY–1:1); H12–(CrCl₃/HY–1:2) and H21–(CrCl₃/HY–2:1) catalysts

4.11 Relative microporosity versus relative mesoporosity for HY–(HY zeolite); H11–(CrCl₃/HY–1:1); H12–(CrCl₃/HY–1:2) and H21–(CrCl₃/HY–2:1) catalysts

5.1 The coefficient of determination and predicted versus observed values for levulinic acid yield (a) and glucose conversion (b)

5.2 Pareto chart of levulinic acid yield (a) and glucose conversion (b)
5.3 3D response surface plots of levulinic acid yield (a) and glucose conversion (b) versus reaction temperature and reaction time 103

5.4 3D response surface plots of levulinic acid yield and glucose conversion versus reaction time and catalyst loading 104

5.5 Contour plots of (a) levulinic acid yield and (b) glucose conversion as function of reaction temperature and catalyst loading at fixed reaction time, 120 minutes 106

5.6 The coefficient of determination and predicted versus observed values for levulinic acid yield from cellulose 110

5.7 Pareto chart of levulinic acid yield 111

5.8 3D response surface plot of levulinic acid yield versus reaction time and reaction temperature 113

5.9 3D response surface plot of levulinic acid yield versus reaction time and catalyst loading 114

5.10 3D response surface plot of levulinic acid yield versus reaction temperature and catalyst loading 115

5.11 TG and DTG analysis of lignocellulosic biomass 120

5.12 Schematic illustration for direction conversion of lignocellulosic biomass into levulinic acid 126
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td>-</td>
<td>Step change</td>
</tr>
<tr>
<td>\circ</td>
<td>-</td>
<td>Degree</td>
</tr>
<tr>
<td>$^\circ C$</td>
<td>-</td>
<td>Temperature</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>Ampere</td>
</tr>
<tr>
<td>Å</td>
<td>-</td>
<td>Armstrong</td>
</tr>
<tr>
<td>cP</td>
<td>-</td>
<td>Centipoise</td>
</tr>
<tr>
<td>g</td>
<td>-</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>-</td>
<td>Hour</td>
</tr>
<tr>
<td>J</td>
<td>-</td>
<td>Joules</td>
</tr>
<tr>
<td>K</td>
<td>-</td>
<td>Kelvin</td>
</tr>
<tr>
<td>min</td>
<td>-</td>
<td>Minutes</td>
</tr>
<tr>
<td>pK_a</td>
<td>-</td>
<td>Dissociation constants</td>
</tr>
<tr>
<td>rpm</td>
<td>-</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>Volt</td>
</tr>
<tr>
<td>w/v</td>
<td>-</td>
<td>Weight over volume</td>
</tr>
<tr>
<td>wt</td>
<td>-</td>
<td>Weight</td>
</tr>
<tr>
<td>α</td>
<td>-</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>-</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>-</td>
<td>Gamma</td>
</tr>
<tr>
<td>θ</td>
<td>-</td>
<td>Angle</td>
</tr>
<tr>
<td>λ</td>
<td>-</td>
<td>Wave number</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

EFB - Empty fruit bunch
[EMIM][Cl] - 1-ethyl-3-methyl-imidazolium-chloride
3D - Three-dimensional
Al - Aluminium
AlCl₃ - Aluminium (III) chloride
ANOVA - Analysis of variance
BET - Brunauer-Emmett-Teller
BJH - Barrett, Joyner & Halenda
CCD - Central composite design
CrCl₂ - Chromium (II) chloride
CrCl₃ - Chromium (III) chloride
CrCO₃ - Chromium (III) carbonate
CuCl₃ - Copper (III) chloride
DOE - Design of experiment
DTG - Differential thermal gravimetric
FeCl₃ - Iron (III) chloride
FTIR - Fourier transform infrared spectroscopy
H₂SO₄ - Sulphuric acid
HBr - Hydrobromic acid
HCl - Hydrochloric acid
HF - Hierarchy factor
HMF - 5-hydroxymethylfurfural
HPLC - High performance liquid chromatography
HY - Y-type faujasite zeolite
IL - Ionic liquid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL–1</td>
<td>1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulphate ionic liquid</td>
</tr>
<tr>
<td>IR-Pyr</td>
<td>Infrared spectroscopy of adsorbed pyridine</td>
</tr>
<tr>
<td>LAP</td>
<td>Laboratory analytical procedures</td>
</tr>
<tr>
<td>LZY</td>
<td>Y-type faujasite zeolite</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>Manganese (II) chloride</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NH₃ –TPD</td>
<td>Temperature programmed desorption of ammonia</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>Si</td>
<td>Silica</td>
</tr>
<tr>
<td>TG</td>
<td>Thermal gravimetric</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal gravimetric analyzer</td>
</tr>
<tr>
<td>t-plot</td>
<td>Statistical thickness</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviole</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>ZRP-X</td>
<td>Mordenite type zeolite</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calibration Curves of the Standard Products</td>
<td>146</td>
</tr>
<tr>
<td>B</td>
<td>Structural and Crystallinity Analyses of Catalysts</td>
<td>151</td>
</tr>
<tr>
<td>C</td>
<td>Response Surface Methodology</td>
<td>156</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Increasing of petroleum oil prices forces the chemical industry to find alternative raw materials for the basic chemicals production (Fang and Hanna, 2002). Biomass is the only renewable resource of fixed carbon, which is essential for the production of conventional hydrocarbon liquid transportation fuel and petrochemical products (Girisuta, 2007). Biomass resources are more preferable compared to others since the biomass feedstocks do not compete with the food chain (Rackemann and Doherty, 2011). A graphical representation of the top 30 building blocks derived from biomass feedstock (Figure 1.1) shows the potential of biomass for bio-based chemicals production as a replacement to the petrochemical resources. Among the screened building blocks, levulinic acid was the top twelve and it was ranked based on these criteria; suitability for the biorefinery, the value of the building block and its derivatives, the technical complexity of each part in the pathway transformation and the potential of the building blocks to produce groups with similar derivatives (Werpy and Petersen, 2004). Therefore, a lot of researches and technologies are carried out nowadays to identify the potential of integrating biomass feedstocks into biofuel and bio-based chemical products.
Figure 1.1 Potential bio-based derived products from biomass feedstocks (Werpy and Petersen, 2004)
Levulinic acid is a short chain fatty acid having a ketone carbonyl group and a carboxylic acid group which makes this compound a versatile building block for various bulk chemicals (Hongzhang et al., 2011). Levulinic acid was identified as one of the top 30 and amongst the top, it was the top twelve sugar-derived building blocks that can be produced from biomass as screened by National Renewable Energy Laboratory (Werpy and Petersen, 2004). It has been produced since 1870 and appeared to be an important basic chemical material with numerous potential uses (Figure 1.2). Levulinic acid can be used as textile dyes, antifreeze, animal feed, coating material, solvent, food flavoring agent, pharmaceutical compound and resin (Chang et al., 2009). Recently, thermal de-oxygenation process is developed for converting levulinic acid to energy dense (low oxygen to carbon ratio) cyclic and aromatic products (Rackemann and Doherty, 2011). These products were produced for easily upgrading to the hydrocarbon fuels.

Figure 1.2 Levulinic acid as a platform chemical for various potential uses of products (Rackemann and Doherty, 2011)
Lignocellulosic biomass such as empty fruit bunch (EFB) and kenaf are renewable, non-edible, cheap and widely abundant biomass resources. Based on the research findings regarding to their technical and commercial potential, EFB and kenaf have a potential in Malaysia’s industrial crop (Abdul Khalil et al., 2010; Goh et al., 2010c). To enhance the potential of EFB and kenaf for producing chemical products, a new industrial uses of them need to be developed. The hydrolysis of EFB and kenaf to produce levulinic acid can be a good alternative method for these plentiful and readily available biomass feedstocks in Malaysia. Empty fruit bunch and kenaf plants have complex structures. They consist of cellulose and hemicellulose polymers that are bound together by lignin. Both cellulose and hemicellulose structures involve in EFB and kenaf conversion to produce levulinic acid as depicted in Figure 1.3. The presence of insoluble humin (carbonaceous residue), one of the side products in the reaction process might increase the complexity of the reaction network (Peng et al., 2010; Fang and Hanna, 2002).

Figure 1.3 Simplified reaction scheme for the conversion of the biomass to levulinic acid (Fang and Hanna, 2002)

A number of approaches have been reported for levulinic acid production. Acid-catalyzed dehydration and hydrolysis of biomass and carbohydrates with acid were widely used in levulinic acid production (Girisuta, 2007). Formic acid and
other byproducts also formed in this reaction (Chang et al., 2007). Other approaches have also been applied such as hydrolysis of acetyl succinate ester, the acid hydrolysis of furfuryl alcohol, the oxidation of ketones, Pd-catalyzed carbonylation of ketones and by the alkylation of nitroalkanes (Bozell et al., 2000). However, all these approaches require expensive feedstock and frequently formed large amounts of side products. The first commercial-scale plant for the levulinic acid production from lignocellulosic biomass was built in Caserta, Italy through a process developed by Biofine Renewables Corporation (Girisuta et al., 2008). The Biofine process uses acid hydrolysis of tobacco bagasse for levulinic acid production in two reactor systems to minimize the side products (Hayes et al., 2008).

A new pathway for biomass conversion to value-added products in a single process under mild conditions can be developed by catalytic hydrolysis in ionic liquid (Wang et al., 2011a; Lee et al., 2011). Ionic liquids are versatile green solvent where they can act as solvents, catalysts and they can be utilized in very different ways; homogenous, multiphase and heterogeneous for biomass transformations or in organo-catalysis (Olivier-Bourbigou et al., 2010). Lately, most of the researchers are trying to build up the potential of ionic liquids as a reaction medium by combining with solid acid, metal halide or salts and mineral acid in biomass hydrolysis and dehydration processes to produce 5-hydroxymethylfurfural, HMF (Su et al., 2009; Hu et al., 2009; Li et al., 2009; Zhang and Zhao, 2009). To date, a few literatures have been reported the potential use of these treatment methods for producing levulinic acid. Thus, this study intends to employ the combination of low cost sources of levulinic acid with this new technology wherein it can open up a new route opportunity for levulinic acid production.
1.2 Problem Statement

The developments of sustainable and clean technologies that can replace the depleting of fossil fuels can be achieved by utilizing the renewable feedstock through tremendously researches (Alonso et al., 2010). Lignocellulosic biomass feedstocks have been seen to be the most suitable feedstock for an alternative to the petrochemical sources existing nowadays. The fractions of biomass can be converted into chemical products such as levulinic acid (Pike and Hertwig, 2008). In the petrochemical industry, levulinic acid can be produced from maleic anhydride and hydrolysis of furfuryl alcohol. These conversion routes are more complex than the acid hydrolysis of biomass and relatively higher market prices of levulinic acid (Rackemann and Doherty, 2011).

Traditionally, homogenous acid hydrolysis was used in the lab and industry scales in producing levulinic acid. Raw materials used for the levulinic acid production included simple sugars, starch, and cellulosic materials (Fang and Hanna, 2002). Extensive studies have been conducted by Chang et al. (2009), Girisuta (2007), Chang et al. (2007) and Girisuta et al. (2006) teams. They have reported the details about experimental and kinetic studies on the homogeneous acid-catalyzed hydrolysis of water hyacinth and wheat straw for levulinic acid production. Basically, production of levulinic acid requires high temperature (150–250 °C) and concentrated mineral acid. In terms of safety and environmental issues, this hydrolysis process is risky and hazardous. According to Chang et al. (2006), although high levulinic acid yield can be attained at low reaction temperature by applying diluted acid at a longer reaction time, the corrosion to equipment and the difficulty of acid recovery for further use caused this method inefficient to be implemented in industry. As an alternative, heterogeneous acid catalysts have been promoted since these catalysts can overcome the problems occurred in homogeneous acid catalysts (Hongzhang et al., 2011).
Heterogeneous acid catalysts are feasible alternatives to homogenous acid catalysts and possibly will offer an environmental advantage due to their selective, recycle and regenerate abilities properties and easy to handle. These can reduce equipment corrosion problems and relatively low cost required if the catalyst can be easily separated and recycled. Due to their advantages compared to homogenous acid catalysts, a lot of studies have been conducted on the synthesis of levulinic acid using multiple solid acid catalysts and feedstock (Rackemann and Doherty, 2011). Low levulinic acid yields were produced in prolong reaction times as reported by Jow et al. (1987), Lourvanij and Rorrer (1993) and Zeng et al. (2010). Thus, further studies were conducted by Peng et al. (2010) and Hongzhang et al. (2011) by employing metal chlorides and solid superacid. They found that these methods have enhanced levulinic acid yields in shorter reaction times but higher reaction temperatures (200 °C) were required. Therefore, further studies are still necessary to comprehend the catalytic activities in the formation of levulinic acid by discovering more reactive catalysts. Exploration of heterogeneous acid catalysts through catalytic performance testing and physico-chemical properties is useful to enhance the levulinic acid yield and selectivity.

In present study, transition metal–modified HY zeolite is rarely utilized in biomass processing especially in levulinic acid production. HY zeolite supported transition metal catalysts have been used widely in the chemical processes especially for the synthesis of high quality fuel (Xiao and Mao, 1995). The catalysts were prepared by constituting the mixture of two or more components and the intention was to catalyze more than one reaction at once (Flores and Silva, 2008). Presently, HY zeolite (Brönsted type acid site) and CrCl₃ (Lewis type acid site) showed high catalytic reactivity on glucose and cellulose conversion towards fructose production and simultaneously dehydrated to HMF before further rehydrated to levulinic acid and formic acid (Tan et al., 2011; Peng et al., 2010; Pidko et al., 2010; Lourvanij and Rorrer, 1993). In addition, very low HMF yield was reported over zeolite and chromium catalysts alone in the reaction systems (Zhang and Zhao, 2009). The low levulinic acid yield could also be expected in these reaction systems since HMF is the intermediate compound before levulinic acid is formed. Therefore, modification of HY zeolite by introducing the CrCl₃ is expected to improve the catalytic properties
and possibly enhance the levulinic acid yield and selectivity from glucose, cellulose and lignocellulosic biomass.

Moreover, the modified HY zeolite with CrCl₃ catalyst assisted with ionic liquid allows the subsequent conversion of feedstock to levulinic acid in high yield and selectivity. Ionic liquid can act as solvent and catalyst for dissolving cellulose structures by disrupting the hydrogen bonds between the molecules (Zhang and Chan, 2010; Zhang and Zhao, 2009). The development of the catalytic activity in ionic liquid requires choosing the right catalyst and ionic liquid as different catalyst and ionic liquid will react with the different purpose. Thus, these limitations and challenges depend on the development of catalyst for the hydrolysis and dehydration processes of biomass feedstock to produce levulinic acid. The precision of catalyst would contribute to a sustainable and cost-effective process through greater utilization of the biomass feedstock. Besides, the catalyst can improve the conversion and enhance the levulinic acid yield and selectivity.

1.3 Research Objectives

The objectives of the research are:

i. To synthesize, characterize and screen CrCl₃/HY catalysts at different weight ratios for glucose conversion to levulinic acid.

ii. To optimize levulinic acid yield from glucose using potential catalyst.

iii. To optimize levulinic acid yield from cellulose using potential catalyst in an ionic liquid.
iv. To utilize lignocellulosic biomass for levulinic acid production at optimum conditions.

1.4 Scopes of Research

The generalized scopes involved in this research are:

i. Synthesis of catalysts with different weight ratios of CrCl₃ and HY zeolite; 1:1, 1:2 and 2:1 via wetness impregnation method.

ii. Characterizations of catalysts using x-ray diffraction (XRD), nitrogen adsorption Brunauer Emmett-Teller (BET), thermal gravimetric analyses (TGA), temperature programmed desorption ammonia (NH₃-TPD), Fourier transform infrared spectroscopy (FTIR) and infrared spectroscopy of adsorbed pyridine (IR-Pyr).

iii. Model compounds of glucose and cellulose were utilized for the catalysts testing, screening and optimization process.

iv. Catalysts testing and screening for glucose conversion to levulinic acid.

v. Optimization process for glucose conversion to levulinic acid by using the potential catalyst.

vi. Optimization process for cellulose conversion to levulinic acid by using the potential catalyst in an ionic liquid.

vii. Determination of lignocellulosic biomass, EFB and kenaf compositions using a thermal gravimetric analyzer (TGA) and Laboratory analytical procedures (LAP).
viii. Utilization of EFB) and kenaf for levulinic acid production at optimum process conditions.

1.5 Thesis Outline

This thesis commences with an introduction to this research in Chapter 1. This chapter describes the research background, recent problems, objectives, scopes and significance of this research. The literatures in Chapter 2 review in detailed the previous researches related to the conversion of biomass and its constitution into valuable bio-based chemical products using various methods as well as researches concerned in this area. Chapter 3 elaborates the experimental procedures such as catalyst preparation, characterization, testing methods and the analytical procedures involved to evaluate the efficiency of the method in this study. The main parts of this research are Chapter 4 and 5 whereby Chapter 4 explains in detail the results and discussions for the characterizations and catalytic activities of the catalysts while Chapter 5 concerns the optimization processes and utilization of lignocellulosic biomass. Finally, Chapter 6 concludes the findings and significance of this study. Recommendations for the future works are also suggested in assurance the positive outlook of this research area.

1.6 Research Significance

This research has developed catalysts with different weight ratios of metal halide (CrCl₃) and HY zeolite. The catalysts have facilitated the steps of dehydration, isomerization and rehydration processes into one pot catalytic reaction.
The presence of ionic liquid could dissolve and cleave the glycosidic bonds in the cellulose structure into simple structure, glucose before further catalyzed into levulinic acid via potential catalyst. These methods were also tested to EFB and kenaf. The results revealed the potential of this study to be implemented in biomass conversion to levulinic acid under adequate process conditions.
REFERENCES

Alriols, M. G., Tejado, A., Blanco, M., Mondragon, I. and Labidi, J. (2009). Agricultural palm oil tree residues as raw material for cellulose, lignin and

