DEFLECTION MONITORING OF CAST IN-SITU BALANCED CANTILEVER PRESTRESSED CONCRETE BOX GIRDER BRIDGE

MOHD KHAIRUL AZMAN BIN HAMBALI

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Civil Engineering (Structure)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

DECEMBER 2012
For my parent, wife and son, who offered me unconditional love and support throughout the research of this thesis.
ACKNOWLEDGEMENT

Praise be to ALLAH S.W.T, who I believe has given His will for me to complete this research.

I would like to express my sincere acknowledgement in the support and assistance of my supervisor, Professor Ir. Dr. Wahid Bin Omar and co-supervisor, Associate Professor Baderul Hisham Bin Ahmad, whose encouragement, guidance and support starting from the beginning to the final level has enabled me to develop an understanding of the subject. Special thanks to MTD Construction Sdn. Bhd. too for their cooperation on sharing the design and data collection.

I wish to express my love and gratitude to my beloved family and wife; for their support, understanding and endless love, through the duration of this study. Lastly, I offer my regards and blessing to all of those who supported me in any aspect during the completion of this research.
ABSTRACT

Monitoring of deflection in the construction of a long span segmental balanced cantilever prestressed concrete box girder bridge is very important because bridge deflection will affect the final bridge level and to avoid large level discrepancies during the joining of two cantilevers. This study presents a comparison of actual and design short-term deflection considering the effect of creep for a four span balanced cantilever prestressed concrete box girder bridge. Each span consists of 26 segments and the deflection data were obtained using leveling instruments. The actual concrete strength of the segments were also recorded. Analysis using these data and the local creep coefficient were carried out using ADAPT-ABI software. Comparisons between actual and design deflections indicate that they are similar for the first four segments of each span with very small values. Substantial values of deflection begin to develop at the fifth segment and the critical value occurred at the middle of the cantilever span. It is also observed that the deflection values are inversely proportional to the concrete strength but directly proportional to the creep coefficient. As an extension of this study, further investigations can be carried out on long term deflection of concrete box girder bridge, behaviour of box girder bridge due to temperature difference, effect of varying element thicknesses and early loading.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1

1.2 Background 3

1.3 Problem Statement 3

1.4 Objectives of The Study 6

1.5 Scope of Study 6

1.6 Significance of Study 7

2 LITERATURE REVIEW

2.1 Introduction to Box Girder Bridges 9

2.2 Balanced Cantilever Method 11
2.2.1 Form Travelers 15

2.3 Materials and Equipment 16

2.3.1 Concrete 16

2.3.1.1 High Performance Concrete 16

2.3.1.2 Lightweight Concrete 17

2.3.2 Wires, Strands and Tendons 17

2.3.3 Prestressing Equipment 19

2.4 Dimension of Concrete Box Girder Segment 20

2.5 Deflection 22

2.5.1 Short-Term Deflection Due to Construction Loading 24

2.5.2 Long-Term Deflection Due to Creep and Shrinkage 26

2.5.3 Box Girder Deflection Principle 29

2.5.4 Pre-camber 31

2.5.5 Computer Program 34

3 METHODOLOGY 36

3.1 Introduction 36

3.2 Cantilever Span 36

3.3 Type of Data 37

3.4 Data Collection Methods 38

3.4.1 Survey Method 38

3.4.2 Concrete Cube Test 39

3.5 Bridge Deflection Monitoring 40

3.6 Actual Concrete Strength 41

3.7 Bridge Modelling 41

4 CASE STUDY 43

4.1 Introduction 43

4.2 The Bridge Overview 43
4.2.1 Bridge Alignment 44
4.2.2 Box Girder Dimension 46
4.2.3 Box Girder Tendon Profile and Layout 47
4.3 Construction Materials 49
 4.3.1 Concrete 49
 4.3.2 Stressing Strands 49
4.4 Construction Equipment 50
 4.4.1 Form Traveler 50
 4.4.2 Stressing Jack 51
4.5 Construction Cycle 52

5 RESULTS AND DISCUSSIONS 54
 5.1 Marking The Cantilever Bridge 54
 5.2 Cantilever Bridge Parameters 56
 5.3 Comparison Between Design Level at Pier 4 and Pier 5 65
 5.4 Comparison Between Actual and Design Level 65
 5.4.1 Comparison Between Actual and Design Level During Concreting 66
 5.4.2 Comparison Between Actual and Design Level During Stressing 68
 5.5 Deflection Monitoring During Construction 71
 5.5.1 Deflection During Concreting and Stressing 72
 5.5.2 Deflection Pattern During Every Concreting Stage 80
 5.5.3 Deflection Pattern During Every Stressing Stage 82
 5.5.4 Pre-Camber at Tip of Each Segment 83
 5.6 Adapt-ABI Data Analysis 86
6 CONCLUSION AND RECOMMENDATION 104

6.1 Introduction 104

6.2 Conclusion 104

6.2.1 Comparison Between Actual and Design Level 105

6.2.2 Deflection Behavior and Critical Segment 105

6.2.3 Comparison Between Design and Actual Concrete Strength 106

6.2.4 Comparison Between Design (ACI 209) and Local Creep Coefficient 107

6.3 Recommendation 107

REFERENCES 109
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Summarize the tendons parameter.</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>The technical criteria for 7-wire strand used in BR29 [29].</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>9 days cycle construction sequence [29].</td>
<td>52</td>
</tr>
<tr>
<td>5.1</td>
<td>Specimen of the bridge.</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>Specimen 1 (left) specimen parameters.</td>
<td>57</td>
</tr>
<tr>
<td>5.3</td>
<td>Specimen 1 (right) specimen parameters.</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>Specimen 2 (left) specimen parameters.</td>
<td>59</td>
</tr>
<tr>
<td>5.5</td>
<td>Specimen 2 (right) specimen parameters.</td>
<td>60</td>
</tr>
<tr>
<td>5.6</td>
<td>Specimen 3 (left) specimen parameters.</td>
<td>61</td>
</tr>
<tr>
<td>5.7</td>
<td>Specimen 3 (right) specimen parameters.</td>
<td>62</td>
</tr>
<tr>
<td>5.8</td>
<td>Specimen 4 (left) specimen parameters.</td>
<td>63</td>
</tr>
<tr>
<td>5.9</td>
<td>Specimen 4 (right) specimen parameters.</td>
<td>64</td>
</tr>
<tr>
<td>5.10</td>
<td>Segment deflection pattern (gradient pattern) during concreting.</td>
<td>81</td>
</tr>
<tr>
<td>5.11</td>
<td>Segment deflection pattern (gradient pattern) during stressing.</td>
<td>82</td>
</tr>
<tr>
<td>5.12</td>
<td>Concrete parameter use in ADAPT-ABI analysis</td>
<td>88</td>
</tr>
<tr>
<td>5.13</td>
<td>Deflection Comparison Between Design ($F_{cu} = 50 \text{ N/Mm}^2$) And Actual ($F_{cu} = 57 \text{ N/Mm}^2$) Concrete Strength Box Girder At Pier 4 for I-Top and I-Bottom.</td>
<td>89</td>
</tr>
</tbody>
</table>
5.14 Deflection Comparison Between Design ($F_{cu} = 50$ N/Mm2) And Actual ($F_{cu} = 57$ N/Mm2) Concrete Strength Box Girder At Pier 4 for J-Top and J-Bottom.

5.15 Deflection Comparison Between Design ($F_{cu} = 50$ N/Mm2) And Actual ($F_{cu} = 57$ N/Mm2) Concrete Strength Box Girder At Pier 5 for I-Top and I-Bottom.

5.16 Deflection Comparison Between Design ($F_{cu} = 50$ N/Mm2) And Actual ($F_{cu} = 57$ N/Mm2) Concrete Strength Box Girder At Pier 5 for J-Top and J-Bottom.

5.17 Percentage different at Pier 4.

5.18 Percentage different at Pier 5.

5.19 Comparison of creep coefficient mean residuals, Re for TROPICS and other models for concrete tested at 7 and 28 days [32]

5.20 Deflection Comparison Between Design ($Cr = 1.995$) And Local ($F_{cu} = 2.265$) Creep Coefficient At Pier 4 for I-Top and I-Bottom.

5.21 Deflection Comparison Between Design ($Cr = 1.995$) And Local ($F_{cu} = 2.265$) Creep Coefficient At Pier 4 for J-Top and J-Bottom.

5.22 Deflection Comparison Between Design ($Cr = 1.995$) And Local ($F_{cu} = 2.265$) Creep Coefficient At Pier 5 for I-Top and I-Bottom.

5.23 Deflection Comparison Between Design ($Cr = 1.995$) And Local ($F_{cu} = 2.265$) Creep Coefficient At Pier 5 for J-Top and J-Bottom.

5.24 Percentage different at Pier 4.

5.25 Percentage different at Pier 5.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Vertical difference between the tips of the two cantilevers before the cantilevers are connected [9].</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Excessive deflection in the completed bridge spans [9]. The dotted line represents the design level.</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Miss align of pre-cast box girder bridge near The New Istana Negara.</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Typical span range for different deck types [10].</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>As the length of the cantilever grows, the magnitude of moment at the pier increases. Since the post-tensioning tendons are also installed and stressed in increments as segments are attached, the top concrete stresses are close to the design limits at all times [10].</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The tendon layout stressed in stages and concrete segment of different ages [16].</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Cantilever method concept [18].</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Scheme of segment casting cycle [19].</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Illustration of a form traveler [4].</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Multi-strand tendon</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Stressing jack at Bridge 29: Over Sungai Terengganu.</td>
<td>19</td>
</tr>
<tr>
<td>2.10</td>
<td>Geometric representation of box girder bridge [21].</td>
<td>20</td>
</tr>
</tbody>
</table>
2.11 The profile of typical box girder bridge. 21
2.12 Typical segment concrete section (A_c), moment of inertia (I_c), centroid, non-prestressed steel (A_{ns}) and prestress tendon (A_{psl}) [16]. 21
2.13 Increase of cantilever deflections due to shear effects [23]. 22
2.14 Shows comparison between predicted deflection and measures deflection of the Děčín Bridge over Elbe in North Bohemia [17]. 23
2.15 Deflection variation at different stages of construction [26]. 25
2.16 Moment diagram at different stages of construction [26]. 25
2.17 Comparison of moment diagram before jointing key blocks and after full construction [26]. 26
2.18 Creep strain in flanges of different thicknesses [25]. 27
2.19 Time dependency function for creep [9]. 28
2.20 Shows shrinkage strains for various slab thicknesses predicted by a realistic creep and shrinkage prediction model—Model B3 [25]. 29
2.21 Horizontal and vertical translations and the rotation of Joint B just before erecting segment 2 [16]. 30
2.22 Evaluation of the initial compensating camber [7]. 33
2.23 The segment level with and without camber [16] 34
3.1 Bridge Over Sungai Terengganu under construction. 37
3.2 Bench mark structure provided by JUPEM 39
3.3 Bridge over Sungai Terengganu for East Coast Expressway phase 2 (BR 29) 42
4.1 Location A is BR29: Bridge over Sungai Terengganu, Pasir Tinggi, Terengganu 44
4.2 BR 29: Bridge over Sungai Terengganu side profile and alignment. 45
4.3 Typical cross-section of BR 29.
4.4 Typical tendon layout of BR29.
4.5 Form traveler for BR 29.
4.6 Prestressing work of BR29 in progress.
5.1 Right Hand Side (RHS) and Left Hand Side (LHS) of the bridge.
5.2 Illustration of specimen of the bridge.
5.3 Segments at both site of Pier 4.
5.4 Different of design level for LHS and RHS level of the bridge.
5.5 Deflection after the final segment (Segment 26) of Specimen 1 is concrete (cast).
5.6 Deflection after the final segment (Segment 26) of Specimen 2 is cast (concrete).
5.7 Deflection after the final segment (Segment 26) of Specimen 3 is cast (concrete).
5.8 Deflection after the final segment (Segment 26) of Specimen 4 is cast (concrete).
5.9 Deflection after the final segment (Segment 26) of Specimen 1 is stressing.
5.10 Deflection after the final segment (Segment 26) of Specimen 2 is stressing.
5.11 Deflection after the final segment (Segment 26) of Specimen 3 is stressing.
5.12 Deflection after the final segment (Segment 26) of Specimen 4 is stressing.
5.13 Deflection at every construction stage (segment concrete) for Specimen 1 (right).
5.14 Deflection at every construction stage (segment concrete) for Specimen 1 (left).
5.15 Deflection at every construction stage (segment concrete) for Specimen 1 (left).
Deflection at every construction stage (segment concrete) for Specimen 2 (right).

5.16 Deflection at every construction stage (segment concrete) for Specimen 2 (left).

5.17 Deflection at every construction stage (segment concrete) for Specimen 3 (right).

5.18 Deflection at every construction stage (segment concrete) for Specimen 3 (left).

5.19 Deflection at every construction stage (segment concrete) for Specimen 4 (right).

5.20 Deflection at every construction stage (segment concrete) for Specimen 4 (left).

5.21 Deflection at every construction stage (segment stress) for Specimen 1 (left).

5.22 Deflection at every construction stage (segment stress) for Specimen 1 (right).

5.23 Deflection at every construction stage (segment stress) for Specimen 2 (left).

5.24 Deflection at every construction stage (segment stress) for Specimen 2 (right).

5.25 Deflection at every construction stage (segment stress) for Specimen 3 (left).

5.26 Deflection at every construction stage (segment stress) for Specimen 3 (right).

5.27 Deflection at every construction stage (segment stress) for Specimen 4 (left).

5.28 Deflection at every construction stage (segment stress) for Specimen 4 (right).

5.29 Comparison between design and actual pre-camber for Specimen 1.

5.30 Comparison between design and actual pre-camber for Specimen 2.
<p>| 5.31 | Comparison between design and actual pre-camber for Specimen 3. | 84 |
| 5.32 | Comparison between design and actual pre-camber for Specimen 4. | 85 |
| 5.33 | Average concrete strength vs time (days) | 87 |
| 5.34 | Notation of I-Top, I-Bottom, J-Top and J-Bottom. | 88 |</p>
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>HPC</td>
<td>High performance concrete</td>
</tr>
<tr>
<td>A_c</td>
<td>Concrete section areas</td>
</tr>
<tr>
<td>I_c</td>
<td>Moment of inertia</td>
</tr>
<tr>
<td>A_{ns}</td>
<td>Non-prestressed steel area</td>
</tr>
<tr>
<td>A_{psi}</td>
<td>Prestress tendon area</td>
</tr>
<tr>
<td>TBM</td>
<td>Temporary bench mark</td>
</tr>
<tr>
<td>BM</td>
<td>Bench mark</td>
</tr>
<tr>
<td>JUPEM</td>
<td>Jabatan Ukur Dan Pemetaan Malaysia</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>RHS</td>
<td>Right hand side</td>
</tr>
<tr>
<td>LHS</td>
<td>Left hand side</td>
</tr>
<tr>
<td>LLM</td>
<td>Lembaga Lebuhraya Malaysia</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>UTS</td>
<td>Ultimate tensile strength</td>
</tr>
<tr>
<td>mm</td>
<td>Milimeter</td>
</tr>
<tr>
<td>kN</td>
<td>Kilonewton</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>N/mm2</td>
<td>Newton per milimeter square</td>
</tr>
<tr>
<td>TROPCS</td>
<td>Tropical Creep and Shrinkage</td>
</tr>
<tr>
<td>EC 2</td>
<td>Eurocode 2</td>
</tr>
<tr>
<td>CEB-FIB</td>
<td>Concrete creep and shrinkage prediction model</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>B3</td>
<td>Concrete creep and shrinkage prediction model</td>
</tr>
<tr>
<td>AS3600</td>
<td>Australian Standard for Concrete Structure</td>
</tr>
<tr>
<td>C50/60</td>
<td>Concrete grade 50</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Introduction

Today’s modern and challenging world does not restrict only at the urban areas but also rural areas. Due to site topography and economy constraints, the need for longer bridge spans increases. Since prestressed concrete bridges are introduced into the United States in 1949, prestressed concrete bridges today represent over 50 percent of all bridges built [1]. Based on the Public Work Department Malaysia [2] database updated until December 2009, there are 9157 bridges recorded on Federal Roads, Malaysia.

Despite the conventional prestressed concrete girder such as I-beam and T-beam, the concrete box girder bridge can be built with longer span. Due to its hollow section, the weight of the girder can be reduced, therefore, the flexural capacity for the section may increase and longer span can be produced. The development of the curved beam theory by Saint-Venant (1843) and later the thin-walled beam theory by Vlasov (1965) marked the birth of all research efforts published to date on the analysis and design of straight and curved box-girder bridges [3].
Generally, the deflections of concrete are caused due to applied load and internal stress, which are creep and shrinkage. There are several standard or design manuals available such as AASHTO and British Standard used to design concrete box girder bridges. Nowadays, the deflection caused by applied loading can be calculated or predicted using commercial design software.

There are two types of deflections to be considered in box girder bridge which are short-term deflection (during construction) and long-term deflection (after bridge completed and open to traffic). According to Richard Malm and Hakan Sundquist [4], the vertical deflection of box girder bridges construct using segmental balanced cantilever method are effected by the downward deflection (due to dead load and live load) and upward deflection (due to prestress of tendons) which is known as short-term deflection.

Generally, long-term deflection is caused by creep, shrinkage and relaxation of the prestressing tendons. The three distinct but inter-related time dependent effects must be considered in the analysis of a segmental bridge [5]. The effect of these three distinct are:

1) Creep is the change in strain with time due to constant stress;

2) Shrinkage is the change in strain with time not due to stress;

3) Relaxation is the change in stress with time due to constant strain [6].

Due to the construction method, it is important to be able to obtain accurate predictions of the bridge deformation during construction and their service life [6].
1.2 Background

The main advantage of cast in-situ balanced cantilever box girder bridge compared to precast concrete box girder bridge is the material transportation accessibility. Due to balanced cantilever construction method, one of the main objectives is the finish level of each segment where all bridge segments must be connected to one another. Despite of smooth driving, the final segment level of each span is very important in order to connect with other spans.

The construction of balance cantilever bridge starts from the support and constructed segment by segment, connecting at both cantilever ends. If the difference of level is severe, appropriate action must be taken to make sure that the difference is within the allowable tolerance in order to joint both cantilever ends.

1.3 Problem Statement

According to Mathivat [7], cast in-place (cast in-situ) cantilevering will usually have larger deflections than precast cantilevers because those segments (precast) are stored for some time before placed in the bridge’s superstructure. Since the balanced cantilever box girder bridge is constructed segmentally, maximum deflection is expected to occur at the farthest segment from the pier (support). Therefore, designers and contractors may expect larger deflection to occur for longer bridge.

Each segment will experience stressing and concreting, which is additional loading applied during construction stage until all segments are stressed. Therefore, pre-camber is applied to every segment during concreting to compensate the effect of
segment weight and construction equipment (form traveler, machinery and ect.). Gunnar Lucko [8] explains the reasons for compensation of the deflection caused by segment weight (dead load) as follow:-

i. Ensuring that the two cantilever beams meet at the same midspan elevation so that the casting of the closure segment is not hindered. It is, however, possible to jack the two cantilever beams into alignment to correct minor misalignments before casting the closure segment [8].

ii. Giving the bridge in service to the visual appearance of strength. Sagging below the vertical plane would also be detrimental to the riding comfort [8].

One of the problems with deflection is during jointing both cantilever ends. During construction, the segments level is checked at least before concreting and after stressing to ensure that the segments level is as per design and expected. However, due to excessive deflection during construction stage, it may result sagging around the middle of the bridge span as illustrated in Figure 1.1 and Figure 1.2 [9]. Peter F. Takács [9] explains the primary importance is to achieve the smooth camber in the bridge deck and to avoid sag at mid-span.

![Figure 1.1](image.png)

Figure 1.1 Vertical difference between the tips of the two cantilevers before the cantilevers are connected [9].
Figure 1.2 Excessive deflection in the completed bridge spans [9]. The dotted line represents the design level.

The segment by segment construction method has resulted in different concrete maturity rate with every segment. Since the normal construction cycle is between 7 to 9 days, the difference of concrete age in days between first segment and segment no. 13 can be 91 days to 117 days. Due to the nature of concrete, the early segment will experience more creep and shrinkage; therefore, it will affect the bridge deflection.

During cantilever state, each part of the box girder may tend to deflect downwards parallel to gravity force. The more deflection occur, the more difficult to join the final segment. In order to overcome the problem, the contractor may have to adjust the bearing at the bottom at each support (pier) or by other methods to suit the required level.

Any adjustment made by the contractor, especially using mechanical methods such as jacking will impose additional loading to the cantilever structure. If the adjustment is not carefully conducted, the whole structure may fail and may provide damage to the bridge. James M. Baker [10] explains that the construction load must not increase significantly over what has been assumed in the design. This is because the tensile stress at the top flange for the same section or segment is offset by the post-tensioning forces applied at a rate similar to the moment.
1.4 Objectives of The Study

The overall aim of this research is to study the deflection behavior of concrete box girder bridge constructed using cast in-situ concrete and balanced cantilever method. The literature review of this research explains the basic concept of constructing box girder bridge and principle of box girder deflection. Therefore, this research is focused to achieve the following objectives:

i. To collect and compare the level data of all box girder segments during every construction stage;

ii. To monitor deflection behavior and identify the critical segment of cast in-situ cantilever prestressed concrete box girder;

iii. To determine actual concrete strength and analyze the bridge deflection using the actual concrete data;

iv. To analyze and compare deflection of each concrete box girder segment using different creep coefficient.

1.5 Scope of study

The study is conducted at a bridge over Sungai Terengganu constructed by MTD Construction Sdn. Bhd. for East Coast Expressway Phase 2. The bridge is designed to suit the state road parameter which consists of two lanes with shoulders and verge. Based on the bridge design, the scope of study is limited to the design parameter itself as listed below:
i. Deflection levels are measured using survey method which practically practiced by the contractor.

ii. Certain assumptions referring to the design parameters which are temperature, relative humidity (RH), wind factor and other design parameters.

iii. Design levels are taken as reference (datum) where upward deflection is taken as positive (deflection above datum) and downward deflection is negative (deflection below datum).

iv. Specimens are constructed using cast in-situ concrete and balance cantilever method.

1.6 Significance of study

The deflection of balanced cantilever bridge is one of the important elements during the bridge construction. On 2011, a cantilever bridge constructed using precast segment link to The New Istana Negara experienced severe level differential and adjustment had to be made in order to join both cantilever ends.

Cast in-situ segments experience larger deflections compared to pre-cast segments, and hence it is important to understand the bridge deflection behavior. Due to lack of research on deflection during construction in Malaysia, the result from this study may assist in providing better understanding to the designers and site engineers on the deflection behavior of segmental box girder bridge constructed using balanced cantilever method.
Figure 1.3 Misalignment of pre-cast box girder bridge near The New Istana Negara.
REFERENCES

1. A. Emin Aktan, et.al, *Concrete Bridge*, A2C03: Committee on Concrete Bridge. 1. 2009
8. Gunnar Lucko, *Means And Methods Analysis Of A Cast-In-Place Balanced Cantilever Segmental Bridge: The Wilson Creek Bridge Case Study*, Thesis of Master Science in Civil Engineering, Faculty of Virginia Polytechnic Institute and State University, November 1999

15. Michele Melaragno, *Preliminary Design of Bridges for Architects and Engineers*, University of North Carolina at Charlotte, Marcel Dekker, Inc, 1998

17. Zdenék P. Bažant, et.al, Excessive Deflections of Record-Span Prestressed Box Girder, ACI Concrete International, June 2010

23. Alena Kohoutková, Long –Term Performance Of Large-Span Prestressed Concrete Bridges, V Praze : České vysoké učení technické, 2004

26. H.M.I. Mahmud et.al, Effects of construction sequences on a continuous bridge, IABSE-JSCE Joint Conference on Advances in Bridge Engineering-II, 2010

29. *Jambatan over Sungai Terengganu (Bukit Payung Spur Road), Method Statement for Balance Cantilever Typical Segment Construction*. VSL Engineers (M) Sdn. Bhd. Not published

30. *Bridge Over Sungai Terengganu, Detail Calculation Form Traveler*. VSL Engineers (M) Sdn. Bhd. Not published

31. L. Vráblík*, V. Křistung*, *Tendon Layout to Avoid Excessive Deflection of Prestressed Concrete Bridge*, Department of Concrete Structures and Bridges, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague 6, Czech Republic

32. Wahid Omar, et.al, *Creep, Shrinkage And Elastic Modulus Of Malaysian Concrete*, Laporan Akhir (PROJECT NO: LPJIPM/CREAM/UPP 02-02-06-09-23), 2008