UNSATURATED SHEAR STRENGTH BEHAVIOUR UNDER UNCONSOLIDATED UNDRAINED TESTS

MAJID SOKHANVAR

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil-Geotechnics)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

December 2012
To my beloved family members

For their endless love, blessings and never ending supports
ACKNOWLEDGEMENT

Firstly, I would like to express my deep and sincere appreciation to my supervisor, Associate Professor Ir. Dr. Azman Kassim, for his encouragement, knowledge, motivation, patience and time in helping me along the preparations of this report.

I wish to convey my gratitude to all technical staffs in Geotechnics Laboratory, especially Mr. Zulkifli for his helping in completing my project. This study also would not have been completed without the conditional and unconditional contribution from all the lectures and course mates in Department of Geotechnics, Civil Engineering Faculty, UTM.

Last but not least, I am grateful to all my family members especially, my mother, father and my dear sister, Mahtab for their endless love, blessings, continuous support and concern at anytime. Thank you very much to all of you.
ABSTRACT

Residual soils cover more than three-quarts of the land area of Peninsular Malaysia. Many steep slopes in these residual soils often have a deep ground water table. Above those ground water tables, the soils are in unsaturated conditions. In this study, unsaturated shear strength behavior of a tropical residual soil under different stress levels is investigated by using uncomplicated testing procedure. Existing triaxial tests use translation technique for determining unsaturated shear strength parameters but ordinary Unconsolidated Undrained triaxial tests were carried out due to lacking of the advanced testing unit in the laboratory. The Unconsolidated Undrained tests were carried out under different cell pressures at different suctions values to obtain the undrained compressive strengths of the specimens. Preliminary results of the consolidated isotropic undrained tests, show effective cohesion and effective angle of friction i.e., saturated shear strength parameters were 9 kPa and 23°, respectively. In Unconsolidated Undrained tests, the values of apparent shear strength at high stress levels range from 66.1 – 72.6 kPa. At low stress levels, the range of apparent shear strength values was obtained in between 53.1 – 57.5 kPa. The value of friction angle for the highest suction pressure tested in this study (300 kPa) was determined 9.9°. This study illustrated that there is nonlinear relationship between the apparent shear strength and suction.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF PROJECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Objectives of Study 4
1.4 Scope and Limitation of study 5

2 LITERATURE REVIEW

2.1 Unsaturated Soil 6
2.2 Suction 10
2.3 Soil Water Characteristic Curve 12
2.4 Shear Strength 15
2.5 Specimen Preparation 20
2.6 Direct Measurement of Pore Pressures 21
2.6.1 Axis Translation Technique 22
2.6.2 Limitations of Direct Measurement of Pore Pressures 24
2.7 Triaxial Shear Test 25
2.7.1 Consolidated Isotropic Undrained Triaxial Test 26
2.7.2 Unconsolidated Undrained Triaxial test 29

3 RESEARCH METHODOLOGY
3.1 Introduction 31
3.2 Sample Collection 33
3.3 Moisture Content Test 35
3.4 Consolidated Isotropic Undrained Tests 36
 3.4.1 Saturation Stage 37
 3.4.2 Consolidation Stage 37
 3.4.3 Shearing stage 38
 3.4.4 Calculations 39
3.5 Suction Data 40
3.6 Unconsolidated Undrained Tests 43
3.7 Unsaturated Shear Strength Parameters 45

4 RESULTS AND DISCUSSIONS
4.1 Introduction 46
4.2 Basic Properties of Soil Samples 47
4.3 Analysis of Soil Water Characteristic Curve 48
4.4 Consolidated Isotropic Undrained Tests 49
4.5 Suction Data 50
4.6 Unconsolidated Undrained Tests 52
4.7 Unsaturated Shear Strength Parameters 53
4.8 Discussions 55
4.9 Summary 58

5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions 59
5.2 Recommendations 60

REFERENCES 61

Appendices A-B 65-106
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Typical values of φ_b gathered from various researches</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Target moisture content values and target suctions</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of Soil Samples</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Soil properties extracted from SWCC</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Target weights for target suctions for unsaturated soil specimens</td>
<td>51</td>
</tr>
<tr>
<td>4.4</td>
<td>Maximum deviator stress for UU tests for several ranges of suctions and cell pressures</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Unsaturated shear strength parameters (φ^b, C_{app}):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Specimens under cell pressure 20 kPa;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Specimens under cell pressure 50 kPa;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Specimens under cell pressure 100 kPa;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Specimens under cell pressure 200 kPa</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Values of angle of frictional resistance to the contribution of matric suction (φ^b) in AEV</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>Reduction ratio of φ^t for the highest suction pressure tested (300 kPa)</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A visualization aid for the generalized world of soil mechanics (Fredlund, 1996)</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Categorization of soil above the water table based on the variation in degree of saturation (Fredlund, 1996)</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>A visualization of saturated/unsaturated soil mechanics based on the nature of the fluid phases (Fredlund, 1996)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>A visualization of soil mechanics showing the role of the surface flux boundary condition (Fredlund, 1996)</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Relative humidity versus total suction relationship</td>
<td>11</td>
</tr>
<tr>
<td>2.6</td>
<td>Typical water characteristic curve showing zones of desaturation (Fredlund et al, 2006)</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Extended Mohr-Coulomb failure envelopes for unsaturated soil</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Direct measurement of pore-water pressure in unsaturated soil specimen (a) Air movement through the porous disk when its air entry value is exceeded; (b) Air diffusion through the high air entry disk and water cavitations in the measuring system</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Diagram of triaxial test equipment</td>
<td>25</td>
</tr>
</tbody>
</table>
2.10 Consolidated isotropic undrained test: (a) specimen under chamber confining pressure; (b) volume change in specimen caused by confining pressure; (c) deviator stress application

2.11 Total stress failure envelope obtained from consolidated undrained tests in over-consolidated clay

2.12 Shear stress versus total normal stress relationship at failure for unconsolidated undrained test

3.1 Flow chart of research methodology

3.2 Removing the top organic soil by backhoe excavator at depth 0.5 to 1 meter (UTM soil laboratory, September 2012)

3.3 Undisturbed soil sampling; (a) Pushing metal standard tubes inside the ground, (b) Extracting undisturbed samples (UTM campus, September 2012)

3.4 Undisturbed soil samples inside containers (UTM soil laboratory, September 2012)

3.5 Digital Tritest 50: 25-3518 for conducting triaxial test

3.6 Two unsaturated soil specimen inside the oven to decrease their weights to reach them target weights

4.1 Soil Water Characteristic Curve (SWCC) (Universiti Pertanian Malaysia, Oct 2010)

4.2 Effective stress failure envelopes and Mohr’s circles for samples 1, 2, 3

4.3 Soil water Characteristic Curve (SWCC) based on gravimetric water content versus suction

4.4 Apparent shear strength (kPa) versus suction (kPa) in low cell pressures (20, 50 kPa)
4.5 Apparent shear strength (kPa) versus suction (kPa) in high cell pressures (100, 200 kPa) 54

4.6 Apparent shear strength envelopes with direction of dilation increasing 56
LIST OF SYMBOLS

\(\bar{A} \) - Skempton’s pore pressure parameter
\(\bar{B} \) - Skempton’s pore pressure parameter
\(c_u \) - Total cohesion
\(C_{app} \) - Apparent shear strength
\(c' \) - Effective cohesion
\(e \) - Void ratio
\(e_0 \) - Initial void ratio
\(G_s \) - Specific gravity of soil
\(l_0 \) - Initial length of the specimen
\(q_u \) - Undrained compressive strength
\(R \) - Universal gas constant
\(RH \) - Relative humidity
\(t \) - Temperature
\(T \) - Absolute temperature
\(u_a \) - Pore-air pressure
\(u_w \) - Pore-water pressure
\(\bar{u}_v \) - Partial pressure of pore-water vapor
\(\bar{u}_{v0} \) - Saturation pressure of water vapor
\(v_{w0} \) - Specific volume of water
\(W_s \) - Weight of solid soils in the specimen
\(W_T \) - Target weight of the specimen
\(W_w \) - Weight of water in the specimen
\(\Delta l \) - Compression of the specimen
\(\Delta u_d \) - Changing in pore-water pressure
\(\Delta \sigma_d \) - Deviator stress
\((\Delta \sigma_d)_f\) - Deviator stress at failure
\(\varepsilon\) - Axial strain
\(\theta\) - Volumetric moisture content
\(\theta_b\) - Volumetric water content at air entry value
\(\theta_r\) - Residual volumetric water content
\(\theta_s\) - Saturated volumetric water content
\(\pi\) - Osmotic suction
\(\sigma_1\) - Axial stress
\(\sigma'_1\) - Effective axial stress
\(\sigma_3\) - Confining cell pressure
\(\sigma'_3\) - Effective confining stress
\(\tau_f\) - Effective shear strength
\(\varphi\) - Total suction
\(\varphi'\) - Effective angle of shearing resistance
\(\varphi^b\) - Frictional resistance due to contribution of matric suction
\(\chi\) - Chi parameter dependent on degree of saturation
\(\omega\) - Moisture content
\(\omega_0\) - Initial moisture content
\(\omega_T\) - Target moisture content of the specimen
\(\omega_v\) - Molecular mass of water vapor
\(u_a - u_w\) - Matric suction
\((u_a - u_w)_b\) - Matric suction at air-entry value
\((u_a - u_w)_f\) - Matric suction of the specimen at failure
\((u_a - u_w)_r\) - Matric suction at residual
\(\sigma_n - u_w\) - Effective normal stress
\(\sigma_n - u_a\) - Net normal stress
\((\sigma_n - u_a)_f\) - Net normal stress at failure
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Consolidated isotropic undrained test results</td>
<td>65</td>
</tr>
<tr>
<td>B</td>
<td>Unconsolidated undrained test results</td>
<td>66</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

For many years, unsaturated soils were either ignored in civil engineering design and construction analysis or were approached inappropriately from the traditional framework of saturated soil mechanics. According to Lu and Likos (2004), however rapid advancement in our understanding of unsaturated soil behavior over the last 30 to 40 years has led today’s civil engineer to realize that, there is now an opportunity to approach problems involving unsaturated soil on a much more rational basis.

Climate plays an important role in whether a soil is saturated or unsaturated. Water is removed from the soil either by evaporation from the ground surface or by evaporation-aspiration from a vegetative cover. These processes produce upward flux water out of the soil. On the other hand, rainfall and other forms of precipitation provide a downward flux into the soil. The difference between two flux conditions on a local scale largely dictates the pore-water pressure conditions in the soil. A net upward flux produces a gradual drying, cracking, and desiccation of the soil mass and a net downward flux eventually saturates the soil mass. According to Dan’ azumi
et al. (2010), Malaysia experiences more than 2000 mm annual rainfall with most of the annual precipitation falls during the monsoon seasons.

The microclimatic conditions in an area are the main factors causing a soil deposit to be unsaturated. Therefore, unsaturated soils or soils with negative pore-water pressures can occur in essentially any geological deposit, such as residual soil, a lacustrine deposit, soils in arid and semi-arid areas with deep ground water table, and tropical soils. Residual soils are products of the in situ physical and chemical weathering of bedrocks. These soils are commonly situated above the groundwater table. Therefore, in situ residual soils are often unsaturated in the nature (or approaching to saturation), and the pore-water pressures of them are negative relative to atmospheric conditions. This negative pore-water pressure is called matric suction. According to Rahardjo et al. (1995), residual soils cover more than three-quarters of the land area of Peninsular Malaysia. Many steep slopes in these residual soils often have a deep ground water table above the soils with high extra attractive force i.e. matric suction. It is well established that the stability of a natural or a cut slope in residual soils depends on the shear strength which is affected by the matric suction. The in-situ matric suction and the shear strength of soils are in turn affected by the climatic conditions, particularly rainfall distributions.

Shear strength parameters are the key input parameters in any soil stability analysis. In fact, the value for determining the shear strength parameters of a soil is required in the prediction of the stability of slopes and embankments, in the bearing capacity of foundations, and in pressures against earth retaining structures. Predicting unsaturated shear strength parameters is more significant in tropical countries, where rainfall and intense chemical weathering have resulted in the formation of such soils.

In vadose zone, the zone above groundwater table, matric suction has a strong influence on shear strength behaviour. This extra attractive force is producing extra shear strength, i.e. apparent shear strength (C_{app}) and friction angle with respect to suction (ϕ^b). The parameters C_{app} and ϕ^b are named unsaturated shear strength
parameters. According to Md. Noor (2011), unsaturated shear strength parameters are not constant variables, but vary with depth and suction.

Several empirical models have also been proposed in prediction of unsaturated soil shear strength parameters, for instance by Fredlund et al. (1996), Vanapalli et al. (1996). These empirical approaches employ the soil water characteristic curve (SWCC). Laboratory works, despite of imposing extra time consuming and relatively higher expenses, are evidently providing the most appropriate mean for measuring the unsaturated shear strength parameters.

Conventional triaxial tests for unsaturated soils require modifications. The presence of air and water in the pores of soil causes the testing procedures and techniques to be more complex than those required when testing saturated soils. The modification must accommodate the independent measurement or control of pore-air and pore-water pressures i.e. translation technique. In addition, in unsaturated soils the pore-water pressure is usually negative and can result in water cavitation problems in the measurement. In this project for predicting unsaturated shear strength parameters normal unconsolidated undrained tests were conducted due to the absence of advanced testing unit. These unconsolidated undrained tests were carried out at different confining pressures and different suctions with using Vanapalli and Fredlund (1997) formulas. This procedure is faster, cheaper and easier to conduct to the existing laboratory procedures.
1.2 Problem Statement

Several empirical models have been proposed in recent years to predict the unsaturated soil shear strength parameters. Laboratory tests, despite of imposing extra time consuming and relatively higher expenses, are evidently providing the most appropriate means for measuring the unsaturated shear strength parameters rather than empirical models.

Existing laboratory tests for determining unsaturated shear strength parameters such as consolidated drained tests and consolidated undrained tests are base on measuring pore-air and pore-water pressures i.e. translation technique. Those procedures are difficult to conduct, complicated, costly and time consuming. This study has been proposed a simple, low cost, and quick way for predicting unsaturated soil shear strength parameters by using normal unconsolidated undrained tests.

1.3 Objectives of Study

The aim of this study is to investigate the effect of stress level on the apparent shear strength of an unsaturated tropical residual soil by using uncomplicated testing procedures. In order to achieve this aim, three objectives are outlined as follows:

1) To determine the apparent shear strength (C_{app}) from unconsolidated undrained test at different stress levels.
2) To determine the friction angle (ϕ^b) from unconsolidated undrained test at different stress levels.
3) To investigate the relationship between apparent shear strength and stress level of the unsaturated residual soil.
1.4 Scope and Limitation of Study

The results of this study were restricted to the soil samples collected from a slope with existence mature tropical tree acacia situated at latitude (+1°33′32.03″) and longitude (+103°38′38.04″). The tree located at the toe of slope in front of P16 at Faculty of Electrical Engineering Universiti Teknologi Malaysia.

In this project, several unconsolidated undrained triaxial tests using normal triaxial testing apparatus, under different cell pressures and different suctions were carried out to obtain the maximum deviator stresses of the unsaturated soil specimens. The unconsolidated undrained triaxial tests have been performed following BS 1377: part 7:1990, clause 8. The only difference was that the unsaturated soil specimens were tested in their initial water contents and suctions. For obtaining saturated shear strength parameters, consolidated isotropic undrained tests have been conducted based on BS 1377: part 8:1990, clause 7. Lack of the advanced testing unit was the limitation of this project.
REFERENCES

