UNDERWATER NOISE ANALYSIS – IMPACT TO COMMUNICATION LINK

NIMA BAHRAMI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical – Electronics & Telecommunication)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
To my beloved Mother
ACKNOWLEDGEMENT

First of all, I would like to express my grateful to Allah because he gives me a good health, strength and idea to complete my Final Year Project and my thesis successfully.

I also would like to give my appreciation and my love to my parents and my family who give me support, encouragement and love. My special thanks go to Amerrudin Bin Bahrom, my great supervisor for my Final Year Project for giving me the idea, support and encouragement during my one year project.

Then, I also want to thank to my friends that support me to do my best in my Final Year Project successfully either directly or indirectly.
ABSTRAK

ABSTRACT

This thesis presents and implements the “Underwater noise analysis-impact to communication data link”. The communication data link has to be assessed in terms of data rate, noise immunity, operational communication range and power consumption. In this thesis, the focus has been on the impact of underwater noise to the performance of a data link. Simulation and modeling of the transmitter and receiver including modeling of several noises in channel with emphasis on the underwater noise level.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
</tr>
<tr>
<td>1</td>
<td>INRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Question</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Limitation</td>
<td>4</td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

2.1 Introduction 5

2.2.1 All types of noise and fluctuation 5

2.2 Narrowband and Wideband noise 6

Ambient noise 7

2.3.1 Seismic noise 7

2.3.2 Ocean Turbulence 8

2.3.3 Shipping Noise 8

2.3.4 Wave Noise 8

2.3.5 Thermal Noise 8

2.3.6 Rain Noise 9

2.4 Natural Signal Fluctuation 10

2.5 Sound metric 10

2.5.1 Sound Pressure 10

2.5.2 Mean-Squared Sound Pressure 11

2.5.3 Velocity and Density 12

2.5.4 Intensity and Power 13

2.5.5 Velocity and temperature ,salinity and depth 13

2.5.6 Sound Levels, Decibels and References 15

2.6 Propagation Loss 15

2.7 Attenuation in underwater channel 18
2.8 Scattering 22
2.9 Sound propagation model 26
2.10 Multipath 30
2.11 Travel Time 31
2.12 Depth – Velocity profile 32
2.13 Depth – Velocity profile reflection 33
2.14 Total transmission loss 34
2.15 Signal Processing 35
2.16 Power Spectral Density 38
2.17 Energy Spectral Density 41
2.18 Modulation 41
2.19 Signal To Noise Ratio 49

3 METHODOLOGY

3.1 Introduction 50
3.2 Methodology strategy 50
3.3 Methodology chart 51
3.4 Investigate parameters 52
3.5 QPSK Receiver model 56
3.6 BER Calculation 56
3.7 Outputs 56
3.8 Communication System Characteristics 57

RESULT AND DISCUSSION

4

4.1 Analyzing and evaluation data 58
4.2 Time domain 58
5 CONCLUSION

4.1 Introduction 84
4.2 Findings 85
4.3 Conclusion 87
4.4 Recommendation 88

REFERENCE 89
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different Bottom type coefficient</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>K& n Bottom coefficient</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Definition of Bottom types coefficients</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Transmission loss parameter</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Input conditions for XOR gate</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Communication System Characteristics</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Different Types of underwater noise</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Narrow and wideband noise</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Frequency range</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Instantaneous sound pressures</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Temperature and depth</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Salinity and velocity</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Spherical Spreading</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Cylindrical spreading</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Frequency domain for three model attenuation</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Grazing angle</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Bottom loss backscattering</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Bottom loss backscattering</td>
<td>25</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Propagation models in relation to five models</td>
<td>29</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Domains of propagation models</td>
<td>29</td>
</tr>
<tr>
<td>2.10</td>
<td>Multipath effect</td>
<td>30</td>
</tr>
<tr>
<td>2.11</td>
<td>Travel Time</td>
<td>31</td>
</tr>
</tbody>
</table>
2.12.1 Different underwater layers
2.12.2 Layers diversity in different season
2.13 Reflected path
2.14 STFT
2.15 Power spectral density
2.16 Binary PSK carrier
2.17.1 QPSK constellation
2.17.2 QPSK transmitter
2.18.1 QPSK receiver
2.18.2 Match filter
2.18.3 Correlation and match filter
2.19 BER graph sample
3.1 AVS audio editor
3.2 Transmitter model
4.1 Noise samples in time domain
4.2 Bubble & dolphin evaluation in time domain
4.3 Rain & ferry evaluation in time domain
4.4 Sonar & Lightning evaluation in time domain
4.5 Outboard motor evaluation in time domain
4.6 Noise Samples in frequency domain
4.7 Lightning bubble sonar samples evaluation
4.8 Dolphin and Rain evaluation
4.9 Outboard motor evaluation
4.10 STFT samples
4.11 Bubble & lightning & outboard motor in STFT
4.12 Rain & Ferry evaluation in STFT
4.13 Sonar & Dolphin evaluation in STFT
4.14 Output signals and QPSK constellation
4.15 Noise on QPSK receiver constellation
4.16 Noise Power Spectral Density
4.17 BER measurement procedures
4.18 BER in QPSK communication system
4.19 BER in QPSK system with fading effect
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT</td>
<td>Part Per Thousand</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Pascal</td>
<td></td>
</tr>
<tr>
<td>BT</td>
<td>Bottom Type</td>
<td></td>
</tr>
<tr>
<td>TL</td>
<td>Transmission Loss</td>
<td></td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral</td>
<td></td>
</tr>
<tr>
<td>1 knot</td>
<td></td>
<td>0.1544444444 m/s</td>
</tr>
</tbody>
</table>
1.1 Introduction

Acoustic waves are the most important characteristic for convey data in underwater domain as a practical method. The mechanical vibration can propagate in sea easily, on the other hand electromagnetic (EM) and lightning signal have many limitation and losses, in counterpart waves that are in acoustic range has better in water environment [9], then newly acoustic signals has effected all data links and radars equipment in underwater communication field. Acoustic signals application divided by three part as shown in figure1.1 [9] first detect and locate obstacles and target second features measurement of marine situation (sea bed topography, analysis of living creatures) and the last transmit and receiving signal of data which can carry information and commands between submarines, vessels, scuba drivers and all robots that are doing a special mission in sea floor.

All communication systems and the media between them have faced noise. Then main noises in underwater environment are ambient noise, self noise, reverberation and acoustic interference [9], that can deform or damage message signal in communication systems cycle. The underwater noise analysis is essential for running every underwater
field project and data link implementation and also underwater noises are based on passive sonar radars for detecting every target [16].

Figure (1.1): types of acoustic noise (1) Ambient noise; (2) self noise; (3) reverberation; (4) acoustic interference; (5) expected target echo

Current trend of research in underwater propagation channel modeling is developed by all types of noise field at dissimilar situations and diverse parameters such as depth, temperature, velocity, pressure. And by pattern noise modeling the researcher and engineers are able to optimum design of equipments and implement communication systems [12]. Oil infrastructure and military systems and seabed topography are some context of noise modeling knowledge [16], can monitored by 2D or 3D graph by many simulator for instance Matlab and Python program.

1.2 Problem Statement

The thesis started with the stated limitations below which affect on the studying of the underwater noise impact to data communication link behavior:

- Study on all types of underwater noise and focus on ambient and self-noise
• Analysis of real man-made, ambient, and marine creature samples in time and frequency domain separately and receiving to time-frequency (STFT) graphs.
• Develop underwater noise modeling which consist of a QPSK transmitter, receiver with additive underwater noise disjointedly in channel between them.
• Performance evaluation of the model with different degree of noise level
• Study of underwater noise behavior on QPSK data link communication

1.3 Objectives

The objectives and goals of this paper can be briefly summarized in the following points:

• To Analyse of several underwater noise samples as a real noise sound wave.
• To investigate change time and frequency characteristics of noise graph by using Matlab software.
• To implement QPSK transmitter and receiver model by Matlab software.
• To investigate BER due to different types of underwater noise on QPSK data communication link.
• To recommend solutions to filter of each types underwater noise.

1.4 Research Question

• What are the underwater signal noises characteristics?
• What can be done to solve high BER in QPSK underwater data link communication?
1.5 Scope

This project will be divided into four phases, they are described as follows:

- Getting underwater sound signal from internet as a real samples.
- Using MATLAB software to get the time, frequency and (STFT) of each under –water noise component.
- Simulate QPSK communication data link by MATLAB software.
- Adding samples noise to QPSK channel and evaluation of the BER model with different kind of noise.

1.6 Limitation

- Collect underwater different noises separately
- The available time to gather information
- The cost in carrying out the research as a practical project
REFERENCE

11. Medwin, h. (2005). *sounds in the sea from ocean acoustics to acoustical oceanography* (first ed.).

