ISOLATION AND IDENTIFICATION OF BACTERIA CAPABLE OF SULFATE REDUCTION FROM PALM OIL SLUDGE

NOOSHA MIRFASIH

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Biotechnology)

Faculty of Bioscience & Bioengineering
Universiti Teknologi Malaysia

JANUARY 2013
To all my beloved family members;
my lovely husband, Omid
and my kind child Ali
ACKNOWLEDGEMENT

I appreciate the moment to express my sincere gratitude to my precious supervisor, Professor Dr. Adibah Bint Yahya, for her encouragements and guidance, critics and friendship during my study. I am thankful to her who made me feel supported and welcome during my study that I was far away from my family.

I am very much grateful to my darling husband, Omid Khabiri, for his kind and never-ending motivations and encouragements; without his understanding and patience, I would not have been able to dedicate my time to my research and to make my path toward greater success.

I also admire and thank my respected parents: Mr. Hosein Mirfasih and Ms. Parvin Sina; without whom, I would not have the chance to understand the beauty of our universe, and the true meaning of love and patience, to this extent. Also I would like to thank to my father in law and my mother in low, Mr. Rahim Khabiri and Ms. Faegheh Ghazizadeh for their constant support and advice. I owe all the nice and valuable moments of my life to them.

Many of my friends are also worthy to be very much appreciated here Lam Chi Yong and Shankar Ail Ramanathan, for their friendly participation in our scientific discussions, by sharing their views and tips to achieve better and more reliable results.

I am also indebted to all of those who devoted their lives to keep the flame of knowledge and science burning brightly and beautifully all across the human history.
ABSTRACT

Sulfur in its native is a yellow crystalline solid. In nature, it occurs as the pure element or as sulfide and sulfate minerals. Inorganic sulfur compounds can be found in the form of sulfate, sulfide, sulfite, thiosulfate, elemental sulfur and polythionates. Sulfate appears to be the most stable and abundant form of sulfur available for use by living organism in the biosphere. This present study focused on the isolation and identification of bacteria capable of sulfate reduction from palm oil sludge (POS). POS is one of the most difficult and complex industrial waste produced in Malaysia from palm oil processing plants. Three different samples of POS were collected from different pond of Palm Oil effluent in palm oil processing plant in Sedenak, Kulai, Malaysia. The concentration of sulfate content in the samples were analysed in order to determine the sample that contain high population of bacteria capable of sulfate reduction. This ensures the possibility of isolating the bacteria of interest from the selected sample. Results from SRB-Bart kit analysis showed that POS from raw pond contain high population of SRB or related bacteria and was chosen for further isolation of the bacteria. Isolation of the bacteria was conducted using selective enrichment method followed by growth on solid medium using rolling bottle technique. The isolation has successfully separated five different pure culture coded X2, X1, E, B and C that were further identified using the analysis of amplified 16S rRNA sequences of the individual bacterium. Four of the bacteria namely E, B, X1, and X2 were found able to reductively degrade sulfate. These bacteria were able to grow and reduce limited amount of sulfate thus indicated to the assimilatory reduction of sulfate activity of these bacteria.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT (ENGLISH)</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAKT (BAHASA MALAYU)</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDIXES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Scope of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem of the Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Objective of the Study</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Significance of the Study</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Sulfate Reduction Pathways</td>
<td>7</td>
</tr>
</tbody>
</table>
2.3 Sulfur Transformation 8
 2.3.1 Assimilatory Sulfure Reduction 9
 2.3.2 Dissimilatory Sulfure Reduction 10
2.4 Biological Characteristics of Bacteria 14
 2.4.1 Growth/Activity at Different Temperatures 14
 2.4.2 Effect of Using Different Carbon Sources/Election Donors 15
 2.4.3 Effect of PH 15
 2.4.4 Effect of Oxygen 16
 2.4.5 Effect of Sulfide 17
2.5 The Sulfur Cycle 6
2.6 Environmental Applications of the Bacteria that Capable to Reduce Sulfate 6
 2.6.1 Anaerobic Oxidation of Alkanes 21
 2.6.2 Growth/Activity at Different Temperatures 22
2.7 Disadvantage of SRB and SRB Related Bacteria 6

3 RESEARCH METHODOLOGY 27
3.1 Nanostructural Simulation and Characterisation 27
3.2 Phase I: Isolation of Pure Culture of Bacteria on Solid Medium 28
 3.2.1 Source of Bacteria 28
 3.2.2 Media Preparation 28
 3.2.3 Selection of Samples for Isolation Bacteria Capable of Reducing Sulfate 30
 3.2.3.1 Measuring the Amount of Sulfate 30
 3.2.3.2 Enrichment Cultures of the Samples 30
 3.2.4 Growth Bacteria on SRB-BART Kit 31
 3.2.5 Isolation of SRB Using Rolling Bottle Technique 32
3.3 Phase II: Cellular Characterization and Determination of Kinetics of Growth and Reduction of Sulfate of Selected Bacteria

3.3.1 Gram Stain

3.3.2 Determination of Kinetics of Growth of Selected Bacteria

3.3.3 Determination Growth of Selected Bacteria in SRB-BART Kit

3.3.4 Determination the Sulfate Reducing Activity of Selected Bacteria

3.4 Phase III: Identification of Isolated Bacteria Based on 16S rRNA Fragment

3.4.1 Genomic DNA Extraction

3.4.2 Gel Electrophoresis

3.4.3 DNA Concentration Measurment

3.4.4 PCR Amplification of 16S rRNA Fragment

3.4.5 Purification of PCR Products

3.4.6 16S rRNA Fragments Sequencing and Analysis

3.4.7 Phylogenetic Study by Using 16S rRNA Gene

4 RESULTS AND DISCUSSION

4.1 Isolation of Bacteria From Palm Oil Sludge

4.1.1 Selection of POS Sample for Isolation the Bacteria

4.1.2 Enrichment the Samples During One Week

4.2 Determination of SRB Using SRB-BART Kits

4.3 Cellular Characterization of SRB

4.4 Growth Profile and Determination the Sulfate Reducing Activity of Selected SRB

4.5 Determination Growth of Selected Bacteria in SRB-BART Kit
4.6 Identification of Isolated Bacteria Based on 16S rRNA

<table>
<thead>
<tr>
<th>4.6.1</th>
<th>DNA Extraction Results</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2</td>
<td>PCR Results</td>
<td>55</td>
</tr>
<tr>
<td>4.6.3</td>
<td>16S rRNA Sequencing Results</td>
<td>57</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Phylogenetic Tree Study</td>
<td>58</td>
</tr>
</tbody>
</table>

5 CONCLUSION

<table>
<thead>
<tr>
<th>5.1</th>
<th>Conclusion</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Future Work</td>
<td>62</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>64</th>
</tr>
</thead>
</table>

APPENDIX A-D

| APPENDIX A-D | 74-84 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Historical development of understanding on the SRB</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Different environment that sulfate reducing bacteria isolated</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Application of sulfate reducing bacteria industries</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Disadvantages of the bacteria that have capability to reduction of sulfate</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical composition of the postgate medium for growth of SRB</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Trace elements stock solution</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Vitamin stock solution</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>PCR running condition and setting</td>
<td>38</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>Total sulfate reduction and the rate of sulfate reduction by indigenous bacteria in the POS samples collected from raw pond, anaerobic pond and aerobic pond</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>The rate of sulfate reduction of enriched samples during one week</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Microscopic observation of isolated bacteria</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Colony morphology of isolated bacteria on postgated B</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth rate and total amount of sulfate reduced by selected bacteria isolated from the raw pond sample</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Concentration of DNA for each sample</td>
<td>55</td>
</tr>
<tr>
<td>4.7</td>
<td>DNA concentration result</td>
<td>57</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Assimilatory sulfate reduction pathway</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Dissimilatory sulfate reduction pathway</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Scheme of the microbiological cycle of sulfur</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>The general experimental design</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Determination of SRB with SRB-BART Kit</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>BART test for sulfate reduction bacteria</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Rate of sulfate reduction from three samples during of 6 days incubated at 37°C</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Rate of sulfate reduction of enriched aerobic sample during one week</td>
<td>43</td>
</tr>
</tbody>
</table>
4.3 Rate of sulfate reduction of enriched raw sample during one week
4.4 Rate of sulfate reduction of enriched anaerobic sample during one week
4.5 Sulfate reduction of the raw sample during one week
4.6 Growth bacteria strain A on Postgate B medium
4.7 Growth bacteria strain X1 on Postgate B medium
4.8 Growth bacteria strain X2 on Postgate B medium
4.9 Growth bacteria strain B on Postgate B medium
4.10 Growth bacteria strain E on Postgate B medium
4.11 Growth bacteria strain C on Nutrient Agar
4.12 Growth and sulfate reduction of isolated bacteria on SRB_BART Kit
4.13 Gel running of mass ruler DNA ladder mix
4.14 The extracted DNA (gel electrophoresis under UV light Lane 1: Mass ruler DNA ladder MIX
4.15 PCR product for 16S rRNA

4.16 Gel electrophoresis of purified PCR products

4.17 Phylogenetic tree of identified bacteria strain E, X1 and X2

4.18 Phylogenetic tree of identified bacteria strain C

A.1 Single colony of bacteria growth in the postage B with the rolling method

B.1 Blast search result of strain C

B.2 Blast search result of strain E

B.3 Blast search result of strain X1

B.4 Blast search result of strain X2

C.1 Nucleotide sequence of strain E (1480 letters)

C.2 Nucleotide sequence of strain X1 (1305 letters)

C.3 Nucleotide sequence of strain X2 (1461 letters)

C.4 Nucleotide sequence of strain C (1031 letters)
D.1 Sulfate reduction and growth rate of strain X1 81

D.2 Sulfate reduction and growth rate of strain E 82

D.3 Sulfate reduction and growth rate of strain B 82

D.4 Sulfate reduction and growth rate of strain X2 83

D.5 Sulfate reduction and growth rate of strain C 83

D.6 Sulfate reduction and growth rate of mixed culture 84
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$S</td>
<td>Hydrogen Sulfide</td>
</tr>
<tr>
<td>SRB</td>
<td>Sulfate Reducing Bacteria</td>
</tr>
<tr>
<td>PAPS</td>
<td>3´-Phosphadenosine 5´-Phosphosulfate</td>
</tr>
<tr>
<td>APS</td>
<td>Adenosine-5´-Phosphosulfate</td>
</tr>
<tr>
<td>Fes$_2$</td>
<td>Iron Disulfide</td>
</tr>
<tr>
<td>CS$_2$</td>
<td>Carbon Disulfide</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine-3´-Phosphosulfate</td>
</tr>
<tr>
<td>PAP</td>
<td>3´, 5´-Diphosphadenosine</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine-1´-Phosphosulfate</td>
</tr>
<tr>
<td>AMD</td>
<td>Acid Mine Drainage</td>
</tr>
<tr>
<td>ARD</td>
<td>Acid Rock Drainage</td>
</tr>
<tr>
<td>SRM</td>
<td>Sulfate Reducing Microorganism</td>
</tr>
<tr>
<td>PCE</td>
<td>Percrgloroethylene</td>
</tr>
<tr>
<td>FGD</td>
<td>Flue Gas Desulfurization</td>
</tr>
<tr>
<td>MIC</td>
<td>Microbiologically Influenced Corrosion</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density EDTA</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>TAE Buffer</td>
<td>Tris-acetate-EDTA buffer</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>Single colony of Bacteria growth in the postage with the rolling method</td>
<td>74</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Blast search result of each strain</td>
<td>75</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Nucleotide sequence of strains</td>
<td>78</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Graphs of growth rate and sulfate reduction of each strains</td>
<td>81</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Insulating Sulfur is the tasteless, odorless and plentiful. It is yellow crystalline solid in the native and in the nature; it is as the pure element, sulfide and sulfate minerals. The H$_2$S, which is produced from sulfur, has the odor and the smell of it is compared to the rotten eggs. Inorganic sulfur compounds can be found in different forms such as sulfide, sulfite, thiosulfate, polythionates and elemental sulfur. One of the abundant and stable forms of sulfur, which is use with the living organism, is sulfate (Komarnisky et al., 2005).

Different groups of microorganism have the ability to reduce sulfate (Peck, 1961). These microorganisms can be divided in to two groups, the first group which Reduce sulfate in the small amounts such as Pseudomonas sp, Bacillus sp, Proteus mirabilis, heterotrophy-Proteus vulgaris and Saccharomyces were called assimilatory sulfate reducers (Berndt and Vargas, 1987). The other group is restricted to the bacteria and archaeal, they used sulfate as the terminal electron acceptor in the anaerobic condition and they were called dissimilatory sulfate reducers.
These two groups have the very important role in the sulfur cycle (Peck, 1961). The important group of dissimilatory sulfate reducer are sulfate reducing bacteria. They are nonpathogenic bacteria. They can live in the environment that is strictly anaerobic, but recently it has been found that some spices of them can tolerate oxygen for the short time (Cypionka, 2000). These bacteria have the ability to tolerant the toxic environment more than the other anaerobic bacteria, this make them special for using them in the remediation process. They can use sulfate, sulfite, thiosulfate as the electron acceptor, also they are contribute in the recycling the elemental sulfur in nature (Butlin et al., 1949; Zhang et al., 2009).

By reduction of sulfate to the H$_2$S, the net alkalinity is generated. These bacteria can be found in different environments such as soil, mud and sediments of freshwaters (rivers and lakes), thermal environments, waters deposited from petroleum processing and many others (Wargin et al., 2007).

Determining the kinetics of growth and sulfur reducing activity in different physicochemical conditions will be useful in determining growth and survival of particular type of bacteria, which able to reduce sulfate in specific environment. This will give significant contribution in the planning and modulating of industrial process and installations. For example in the case of corrosion prevention, the choice of biocide can be easily determined when the structure and characteristics of these bacteria community in the system can be predicted. The bacteria which degrade sulfate are known as the source of 75% corrosion occurs in production wells and more than 50% failures of buried pipelines and cables (Anandkumar et al., 2009).
1.2 Scope of the Study

In this research, three samples of Palm oil sludge from different ponds (anaerobic, aerobic and raw) were collected from Mahamurni Plantations, Sedenak, Kulai, Malaysia. The samples were used to isolate and identify culturable bacteria, which able to reduce sulfate. The selection of palm oil sludge was carried out in order to determine the density of these bacteria in the sample. SRB-BART kit was used to analyze the presence of population of these bacteria in all samples collected. Isolation were carried out employing enrichment technique, under anaerobic condition. Pure culture of the bacteria was selected for further identification based on phylogenetic characterization. Growth and sulfate reducing activities of the selected bacteria were investigated.

1.3 Problem of the Statement

The bacteria which reduce sulfate causing the very bad odour, the smell of it is like the rotten egg. This smell is due to the H$_2$S and this gas is very toxic. The presence of this gas in the equipments of industries specially in the petroleum tanks caused damage in the subsurface and surface of the equipments and this the main problems in the industries (ZoBell, 1958). One of the reasons of reservoir souring is due to the production of H$_2$S which is called biogenetic H$_2$S which sulfate reduces to sulfide due to anaerobic bacteria activity (Fitzgerald et al., 1998).

These bacteria have the important role in the corrosion in the pipelines and other industrial installation. The oil industry estimates that SRB are the cause of large economically losses due to corrosion damages in pipelines (Anandkumar et al., 2009; Gittel et al., 2009; Sungur et al., 2010).
1.4 Objective of the Study

This study was designed to meet several objectives as follow:

(a) To isolate the bacteria with the ability of reduced sulfate from suitable palm oil sludge using enrichment technique

(b) To identify physiological and phylogenetic characteristics of selected pure bacteria

(c) To determine the kinetics of growth and sulfur reducing activity of selected bacteria

1.5 Significance of the Study

The interest in bacteria due to the ability of removal of sulfate and heavy metals, so the culturing and identification of these bacteria from the environment is very important for understanding the mechanism of them to help in control the growth and activities of them (Luptakova, 2007).

The degradation of sulfate to produce hydrogen sulfide by these bacteria causes the significant production of alkalinity. On the other hand hydrogen sulfide capable of binding with heavy metals and caused precipitation of the metal sulfide, so it helps to the process of metal removal. Successful isolation and cultivation of SRB enable further manipulation of the bacteria to enhance environmental
bioremediation such as in the treatment of acid mine drainage (AMD) developed from accumulation of high concentration of sulfur or sulfate (Zhang et al., 2009).

Some microorganisms have the ability to degrade sulfur-containing crude oil; one of the famous families that used in industries is SRB. Some spices of Gamaproteobacteria have this ability by recognizing the bacteria which capable to reduce sulfate can be help to control the removal of sulfur content from crude oil and improving the quality of it (Sherry et al., 2012; Suárez-Suárez et al., 2011).
REFERENCES

Desulfotomaculum sapomandens sp. nov. FEMS Microbiology Letters 29:325-330.

