ALTERNATING GROUP EXPLICIT METHOD FOR EDGE DETECTION ON BRAIN AND BREAST TUMOUR IMAGES

ZAWANAH BINTI MD. ZUBAIDIN

UNIVERSITI TEKNOLOGI MALAYSIA
ALTERNATING GROUP EXPLICIT METHOD FOR EDGE DETECTION ON BRAIN AND BREAST TUMOUR IMAGES

ZAWANAH BINTI MD. ZUBAIDIN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of
Master of Science (Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2013
To my beloved family,

Md. Zubaidin Muhamad @ Mamat
Rohaya Ismail
Zawani Md. Zubaidin
Md. Zulkarami Md. Zubaidin
Zatil Syarafana Md. Zubaidin.

With love and much thanks.
In the name of Allah, the most Gracious and the most Merciful. Firstly, I would like to express my gratitude to Allah S.W.T. for His love and giving me strength and patience so that I can completely finish this dissertation task.

In particular, I would like to thanks and wish a greatest appreciation to my supervisors, Assoc. Prof. Dr. Norma Alias and En. Che Rahim Che Teh for their guidances, encouragements, and knowledges. Their meaningful advices to me throughout this period will never be forgotten.

Much love and many thanks I would like to express to my beloved mum, Mrs. Rohaya Ismail, and dad, Mr. Md. Zubaidin for all their loves, cares, and support. For my siblings, thank you for the great motivation. I am so blessed to have their loves in my life.

Finally, I would like to express my sincere appreciation to my senior, Rosdiana Shahril for her teaching and knowledge sharing. Greatest thanks to my fellow friends, Nor Aziran, Maizatul Nadirah, Nor Hafizah, Wan Sri Nurul Huda, Nurul Alya, Hafizah Farhah, Asnida and others for their helps throughout the way in completing this dissertation.
In this research, we used Geodesic Active Contour (GAC) model to detect the edges of brain and breast tumor on MRI images. An additive operator splitting (AOS) method is employed in the two dimensional GAC model to maintain the numerical consistency and makes the GAC model computationally efficient. The numerical discretization scheme for GAC model is semi-implicit and unconditional stable lead to sparse system matrix which is a block tridiagonal square matrix. The proposed AOS scheme capable to decompose the sparse system matrix into a strictly diagonally dominant tridiagonal matrix that can be solved very efficiently likes a one dimensional problem. Gauss Seidel and AGE method is used to solve the linear system equations. The AGE employs the fractional splitting strategy which is applied alternately at each half (intermediate) time step on tridiagonal system of difference scheme and it is proved to be stable. This advanced iterative method is extremely powerful, flexible and affords users many advantages. MATLAB has been choosing as the development platform for the implementations and the experiments since it is well suited for the kind of computations required. In the implementation of GAC-AOS model for edges detection of tumor, the experimental results demonstrate that the AGE method gives the best performance compared to Gauss Seidel method in term of time execution, number of iterations,.RMSE, accuracy and computational cost.
ABSTRAK

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DECLARATION | ii |
DEDICATION | iii |
ACKNOWLEDGEMENT | iv |
ABSTRACT | v |
ABSTRAK | vi |
TABLE OF CONTENTS | vii |
LIST OF TABLES | x |
LIST OF FIGURES | xi |
LIST OF ABBREVIATIONS | xiii |
LIST OF SYMBOLS | xiv |
LIST OF APPENDICES | xv |
1 | INTRODUCTION | 1
1.1 Introduction | 1 |
1.2 Background of the Problem | 5 |
1.3 Statement of the Problem | 8 |
1.4 Objectives of the Study | 9 |
1.5 Scope of the Study | 9 |
1.6 Significance of the Study | 10 |
1.7 The Organization of the Dissertation | 10 |
LITERATURE REVIEW

2.1 Introduction
2.2 Geodesic Active Contour (GAC) Model
2.3 Semi-Implicit Additive Operator Splitting (AOS) Scheme
2.4 Finite Difference Method
2.5 Linear System Equations
2.6 Iterative Method
2.6.1 Gauss-Seidel (GS) Method
2.6.2 Alternating Group Explicit (AGE) Method
2.7 Numerical Analysis of the Sequential Algorithm
2.8 Computational Platform System
2.8.1 Read an Image in MATLAB Programming
2.9 Summary of Literature Review

GEODESIC ACTIVE CONTOUR (GAC) MODEL BASED ON AOS SCHEME

3.1 Introduction
3.2 The Use of Notations
3.3 The Discretization of GAC Model
3.3.1 The Discretization of Divergence (div) Operator
3.3.2 Semi Implicit Scheme
3.3.3 AOS Scheme
3.4 The Balloon Force
3.5 Linearization of the Discretized GAC-AOS Model
3.5.1 Evolution in x-Direction
3.5.2 Evolution in y-Direction
3.6 The Algorithm of Edges Detection on MRI Image
NUMERICAL IMPLEMENTATION

4.1 Introduction 74
4.2 Alternating Group Explicit (AGE) Method 75
 4.2.1 Solving the System Matrix A_1 76
 4.2.2 Solving the System Matrix A_2 85
4.3 Gauss-Seidel Method 93

ANALYSIS AND DISCUSSION

5.1 Introduction 95
5.2 Results of Edges Detection 96
 5.2.1 AGE 96
 5.2.2 Gauss Seidel 97
5.3 Analysis Results for Iterative Methods 99
5.4 Result of Accuracy 101
5.5 Computational Complexity 103

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion 105
6.2 Recommendations for The Future Research 106

REFERENCES 107
Appendices A-C 112
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of Literature Review</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Analysis of AGE and GS method for brain tumor MRI image</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Analysis of AGE and GS method for breast tumor MRI image</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Coordinate of the contour to the exact coordinate of the object using AGE and GS method for brain tumor MRI image. The pixels have size 1 in each direction.</td>
<td>102</td>
</tr>
<tr>
<td>5.4</td>
<td>Coordinate of the contour to the exact coordinate of the object using AGE and GS method for breast tumor MRI image. The pixels have size 1 in each direction.</td>
<td>102</td>
</tr>
<tr>
<td>5.5</td>
<td>Computational cost of one iteration for brain and breast tumor MRI</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Computational cost for brain tumor MRI image</td>
<td>104</td>
</tr>
<tr>
<td>5.7</td>
<td>Computational cost for breast tumor MRI image</td>
<td>104</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1.1</td>
<td>Parametric curve in ((x, y)) plane</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>A uniform grid spacing system with (\Delta y = \Delta x = h)</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>The grid point of interest ((u_{i,j})) and its neighbouring points for two dimensional problems</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Initial partitioning of matrix (A)</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>The \textit{tic} and \textit{toc} function works together to measure elapsed time in MATLAB</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>The desktop of MATLAB programming</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>MATLAB editor shows the used of \texttt{imread} command to read the image of Brain in \texttt{.jpg} type</td>
<td>39</td>
</tr>
<tr>
<td>2.7</td>
<td>The chart of research scope for edges detection on MRI image</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>A Cartesian grid by Ralli (2011)</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Pixels involved in the approximation of the divergence term (3.3.14) for the difference schemes</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Pixel of interest denoted by (C) (Central) and its neighbourhood pixels denoted by (N) (North), (W) (West), (E) (East), and (S) (South)</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>A table to represent the system matrix (A) of size ((3\times3)\cdot(3\times3))</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Column and row wise pixel ordering. (a) Column wise ordering through (x)-direction; (b) row wise ordering through (y)-direction</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>The algorithm of edges detection on MRI image</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>The computational molecule of AGE method (explicit) at level ((k + \frac{1}{2})) through (x)-direction</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>The computational molecule of AGE method (explicit) at level ((k + 1)) through (x)-direction</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>The computational molecule of AGE method (explicit) at level ((k + \frac{1}{2})) through (y)-direction</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>The computational molecule of AGE method (explicit) at level ((k + 1)) through (y)-direction</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>The computational molecule of GS method in (x)-direction</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>The computational molecule of GS method in (y)-direction</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Final contour of the brain tumor MRI image based on AGE method</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Final contour of the breast tumor MRI image based on AGE method</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Final contour of the brain tumor MRI image based on GS method</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Final contour of the breast tumor MRI image based on GS method</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>To find the accuracy between (a) coordinate of the original image, and (b) coordinate of the final contour</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Active contour model</td>
</tr>
<tr>
<td>ADI</td>
<td>Alternating Direction explicit</td>
</tr>
<tr>
<td>AGE</td>
<td>Alternating Group Explicit</td>
</tr>
<tr>
<td>AOS</td>
<td>Additive Operator Splitting</td>
</tr>
<tr>
<td>C-N</td>
<td>Crank-Nicholson</td>
</tr>
<tr>
<td>GAC</td>
<td>Geodesic Active Contour</td>
</tr>
<tr>
<td>GE</td>
<td>Group explicit</td>
</tr>
<tr>
<td>GGAC</td>
<td>Generalized Geodesic Active Contour</td>
</tr>
<tr>
<td>GS</td>
<td>Gauss Seidel</td>
</tr>
<tr>
<td>IADE</td>
<td>Iterative Alternating Decomposition Explicit</td>
</tr>
<tr>
<td>JPEG</td>
<td>Join Photographic Experts Group</td>
</tr>
<tr>
<td>LSE</td>
<td>Linear system equations</td>
</tr>
<tr>
<td>MRI</td>
<td>Medical Resonance Image</td>
</tr>
<tr>
<td>PDE</td>
<td>Partial differential equation</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>SOR</td>
<td>Successive Over Relaxation</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>Edge detection of tumor</td>
</tr>
<tr>
<td>x, y</td>
<td>The space at coordinate system</td>
</tr>
<tr>
<td>ε</td>
<td>Tolerance value</td>
</tr>
<tr>
<td>E_{snake}</td>
<td>Energy of snake</td>
</tr>
<tr>
<td>E_{int}</td>
<td>Internal energy</td>
</tr>
<tr>
<td>E_{ext}</td>
<td>External energy</td>
</tr>
<tr>
<td>E_{image}</td>
<td>Image forces</td>
</tr>
<tr>
<td>E_{con}</td>
<td>External constraint forces</td>
</tr>
<tr>
<td>E_{line}</td>
<td>Line functional</td>
</tr>
<tr>
<td>E_{edge}</td>
<td>Edge functional</td>
</tr>
<tr>
<td>E_{term}</td>
<td>Termination functional</td>
</tr>
<tr>
<td>α, β, ω</td>
<td>Weighted for energy of snake</td>
</tr>
<tr>
<td>∇</td>
<td>Gradient operator</td>
</tr>
<tr>
<td>Ω</td>
<td>Image domain</td>
</tr>
<tr>
<td>J</td>
<td>Pixel of interest</td>
</tr>
<tr>
<td>J</td>
<td>Neighbourhood pixel of pixel of interest</td>
</tr>
<tr>
<td>$\mathcal{N}(J)$</td>
<td>The set of four neighbourhood pixel</td>
</tr>
<tr>
<td>ρ</td>
<td>Acceleration parameter</td>
</tr>
<tr>
<td>g</td>
<td>Stopping function</td>
</tr>
<tr>
<td>v</td>
<td>Positive constant</td>
</tr>
<tr>
<td>τ</td>
<td>Time</td>
</tr>
<tr>
<td>k</td>
<td>Number of iterations</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>File main.m</td>
<td>112</td>
</tr>
<tr>
<td>B</td>
<td>File Gauss Seidel.m</td>
<td>113</td>
</tr>
<tr>
<td>C</td>
<td>File AGE.m</td>
<td>114</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

In the past several years, active contour models have been widely applied in computer vision especially in image processing since they were first introduced by Kass et al. (1988). It is an effective tool for image segmentation, object tracking, shape recognition, edge detection and stereo matching.

According to representation and implementation, active contours can be classified into two types which are parametric active contours Kass et al. (1988), Cohen (1991), Eviatar and Samorjai (1996), Xu et al. (2000), Wang et al. (2009) and geometric active contours Caselles et al. (1993), Caselles et al. (1997), Xu et al. (2000), Goldenberg et al. (2001).

Parametric active contours are represented explicitly as parameterized curves or splines. Geometric active contours are represented implicitly as level sets of two-dimensional distance functions which its evolution does not depend on particular parameterization. These models are based on the curve evolution theory and geometric flows, Caselles et al. (1993)
In (x, y) plane, the contour is defined as a parametric curve (Rosdiana, 2012),

$$v(s) = (x(s), y(s)) \quad (1.1.1)$$

where $x(s)$ and $y(s)$ are the coordinates throughout the contour as shown in Figure 1.1. Parameter s is independent and with domain $s \in [0,1]$.

![Diagram of parametric curve in (x, y) plane]

Figure 1.1: Parametric curve in (x, y) plane

In 1988, Kass *et al.* make a contribution in image processing field with the introduced Snake active contour model. This model is a parametric active contour model. The contour of Snake model is a controlled continuity spline associated to its energy functional which is the sum of two terms of internal and external forces.

Snake is called as an active model because it always minimizing its energy functional to develop the contour line. The implementation of Snake model is based on the image processing to the targeting region. The energy functional of Snake model is defined as (Kass *et al.*, 1988),

$$E_{snake}^* = \int_0^1 E_{snake}(v(s)) \, ds$$

$$= \int_0^1 E_{int}(v(s)) + E_{ext}(v(s)) \, ds \quad (1.1.2)$$

$$= \int_0^1 E_{int}(v(s)) + E_{image}(v(s)) + E_{con}(v(s)) \, ds$$

where
\(E_{\text{snake}} \): Energy functional of Snake
\(E_{\text{int}} \): Internal energy of Snake to smooth the edge curve
\(E_{\text{ext}} \): External Snake forces lead the curve to the edges of object in the image.
\(E_{\text{image}} \): Image forces pushing the Snake toward the desired object.
\(E_{\text{con}} \): External constraint forces

The internal energy can be expressed as (Kass et al., 1988),

\[
E_{\text{int}} = \frac{\left(\alpha(s) \left| v_s(s) \right|^2 + \beta(s) \left| v_{ss}(s) \right|^2 \right)}{2} \tag{1.1.3}
\]

The first-order term \(v_s \) is controlled by \(\alpha(s) \) and the second-order term \(v_{ss} \) is controlled by \(\beta(s) \). The function of first-order term is to make the Snake act like a membrane while the second-order term is to make Snake act like a thin-plate.

The relative importance of the membrane and thin-plate terms can be control by adjusting the weighted \(\alpha(s) \) and \(\beta(s) \). By reviewing some previous researches, a constant applied as a coefficient for the first-order term in (1.1.3) i.e., \(\alpha(s) = \alpha \), Wang et al. (2009). While the weight of \(\beta(s) \) need to set as zero. This is to make sure that Snake can be second-order discontinuous and extract a corner.

The total image energy is a weighted combination of the three energy functionals. This energy can be represented as follows

\[
E_{\text{image}} = w_{\text{line}} E_{\text{line}} + w_{\text{edge}} E_{\text{edge}} + w_{\text{term}} E_{\text{term}} \tag{1.1.4}
\]

The three different energy functional \((E_{\text{line}}, E_{\text{edge}}, E_{\text{time}}) \) can attract a the contour of Snake to lines, edges, and terminations. A wide range of Snake can be created by adjusting the weights \((w_{\text{line}}, w_{\text{edge}}, w_{\text{term}}) \).
A line functional E_{line} is the image intensity itself. It is defined as,

$$E_{\text{line}} = I(x, y)$$ \hspace{1cm} (1.1.5)

where $I(x, y)$ is the image function and it is viewed as a function of continuous position variables (x, y), Cheng et al. (2007). It is depending on the sign of w_{line} so that the contour or Snake will be attracted to either low level prediction contour or high level of prediction contour.

The edges of the image can be found by the energy functional (1.1.6), Kass et al.(1988). This allows Snake model to be attract to contours with large image gradient.

$$E_{\text{edge}} = -\left| \nabla I(x, y) \right|^2$$ \hspace{1cm} (1.1.6)

A different edge functional (1.1.7) issued by Kass et al.(1988) in order to show the relationship of scale-space continuation to the theory of edge-detection by Marr and Hildreth(1980).

$$E_{\text{edge}} = -\left(G_{\sigma}(x, y) \ast \nabla^2 I(x, y) \right)^2$$ \hspace{1cm} (1.1.7)

where $G_{\sigma}(x, y)$ represents as a two dimensional Gaussian of standard deviation σ and ∇ is the gradient operator. The functional lies on zero-crossing of $G_{\sigma} \ast \nabla^2 I$. The location is minima which defined edges in the Marr-Hildreth theory. The Snake will attract to zero-crossing if we add the edge functional term (1.1.7) to the existing equation (1.1.4). Despite of adding this term to Snake model, it is still constrained by its own smoothness.

Curvature of level lines in equation (1.1.8) is used to find the terminations of line segments and corners in a slightly smoothed image.
\[
E_{\text{term}} = \frac{\partial \theta}{\partial n_\perp} \\
= \frac{\partial^2 C / \partial n_\perp^2}{\partial C / \partial n} \\
= \frac{C_{yy} C_x^2 - 2 C_{xy} C_x C_y + C_{xx} C_y^2}{(C_x^2 + C_y^2)^{3/2}}
\] (1.1.8)

where \(C(x, y) = G_\sigma(x, y) * I(x, y) \) is the smoothed image, \(\theta = \tan^{-1}\left(C_y / C_x \right) \) is the gradient angle, and \(n = (\cos \theta, \sin \theta) \) and \(n_\perp = (-\sin \theta, \cos \theta) \) be unit vectors and perpendicular to the gradient direction. From the iterations in numerical implementation, the combination of \(E_{\text{edge}} \) and \(E_{\text{term}} \) full fill the convergent criterion.

1.2 Background of the Problem

The image processing problem in this research is to detect the edges of object on medical resonance image (MRI). The traditional active contour or Snake model has some drawbacks. Basically, it depends on its parameterization. The characteristic of active contour parameterization is limited ability to draw the geometrical regularity of contour. Other problem is the model cannot deal with changes in topology directly and impossible to detect all the objects in an image.

To overcome the problem of Snake, Caselles et al. (1993) proposed geometric models of active contours based on the curve evolution theory and the level set method. The proposed model is as follows,

\[
\frac{\partial u}{\partial t} = g(x) \left| \nabla u \right| \left(\text{div} \left(\frac{\nabla u}{\left| \nabla u \right|} \right) + v \right) \quad (r, x) \in [0, \infty) \times \mathbb{R}^2
\] (1.2.1)
with the initial data as,

\[u(0, x) = u_0(x) \quad x \in \mathbb{R}^2 \]

(1.2.2)

\[g(x) = \frac{1}{1 + (\nabla G_\sigma \ast g_0)^2} \]

(1.2.3)

where

\[|\nabla u| : \text{To controls the interior and exterior of contour} \]

\[\text{div} \left(\frac{\nabla u}{|\nabla u|} \right) : \text{To ensures that the grey level at a point increase proportionally to the algebraic curvature. Also responsible in regularizing effect of the model and done its rule in internal energy (1.1.3)} \]

\[v : \text{A positive real constant and a correction term so that } \text{div} \left(\frac{\nabla u}{|\nabla u|} \right) + v \text{ remains always positive.} \]

\[G_\sigma \ast g_0 : \text{The convolution of the image } g_0 \text{ and } G_\sigma(x) = C\sigma^{-1/2} \exp \left(-|x|^2 / 4\sigma \right) \]

\[g(x) : \text{Stopping function. The aim is to stop the evolving curve when it arrives to the object edges} \]

The improvement of geometric active contour model is not dependent on the curve’s parameterization. The implementation level-set based on numerical algorithm (Osher and Sethian, 1988) is allowed changes in the topology automatically. So, the good implementation of geometric active contour is several objects can be detected simultaneously.

Other alternative model proposed by Caselles et al. (1997) was geodesic active contour model. It is a geometric model and also energy functional minimization.
Caselles et al. (1997) suggested the model of geodesic active contour as follows

\[
\frac{\partial u}{\partial t} = |\nabla u| \text{div} \left(g(x) \frac{\nabla u}{|\nabla u|} \right) + v |\nabla u| g(x) \quad (t, x) \in [0, \infty) \times \mathbb{R}^2
\]

(1.2.4)

The real fact is, geodesic active contour model yields the same result as that of a simplified Snake model. It is up to arbitrary constant that depends on the initial parameterization (Goldenberg et al. 2001).

However, geodesic active contour also has its drawbacks that we need to consider in this research. The main disadvantage is its nonlinearity that will cause bad implementation.

To linearize the geodesic active contour model, we apply the additive operator splitting (AOS) scheme based on the Weickert et al. (1998). It can be defined as follows,

\[
u^{k+1} = \frac{1}{m} \sum_{j=1}^{m} \left(I - m \tau A^j \left(u^k \right) \right)^{-1} u^k
\]

(1.2.5)

where

- \(k \) : Number of iteration
- \(m \) : Dimension of the problem
- \(l \) : Index running over the dimension
- \(I \) : Unit matrix
- \(\tau \) : Time step

This numerical scheme is an unconditionally stable for nonlinear diffusion for image processing problem. It is consistent, first order and semi-implicit scheme. In this research, we are going to consider the two dimensional model of active contour. So the AOS scheme for two dimensional cases is given by,
\[u^{k+1} = \frac{1}{2} \sum_{l=1}^{2} \left(I - 2\tau A_l(u^k) \right)^{-1} u^k \] (1.2.6)

where \(A_l = (a_{ij}) \) (Rosdiana,2012) corresponds to derivative along the \(l \)-th coordinate axis. Even though the problem to be overcome is in two dimensional cases, AOS scheme will easily turn that problem into one dimensional case, Weickert (1998). All coordinate axes can be treated in exactly the same manner since the AOS is an additive splitting scheme.

Therefore in this research, we will consider to use the geodesic active contour model based on additive operator splitting scheme to detect the edges of brain and breast tumor on medical images.

1.3 Statement of the Problem

In this study, we use GAC model based on AOS scheme to detect the edges of tumor on MRI images. To implement this model, it needs to be discretized first. Hence we tend to use the finite different method in order to discretize the model. From the discretized version of GAC-AOS model, we could derive the linear system equations. We should get the tridiagonal and diagonally dominant matrix system so that we can solve easily by using AGE and GS method. The solution of the matrix system by AGE and GS method would give the different numerical results in term of time execution, number of iterations, root mean square error, accuracy, rate of convergence, and computational cost. Based on the numerical result performances, the best iterative method between AGE and GS method can be determined.
1.4 Objectives of the Study

The objectives of the study are:

i) To detect the edges of brain and breast tumor on MRI images.

ii) To apply some iterative methods (AGE and Gauss Seidel) to solve the linear system equations.

iii) To compare the numerical analysis of the iterative methods (AGE, and Gauss Seidel) in term of time execution, number of iterations, computational complexity, root mean square error (RMSE), convergence rate and accuracy.

1.5 Scope of the Study

This study will focus on detecting the edges of tumor by using Geodesic active contour (GAC) model based on additive operator splitting (AOS) scheme. The solution for linear system of equation (LSE) can be done by using some iterative methods. The iterative methods under consideration are Gauss-Seidel, alternating group explicit (AGE). This experiment will be applied to brain and breast tumor on MRI images. The MRI images are the real image of two patients from Hospital Kubang Kerian, Kelantan and Hospital Kuala Batas, Pulau Pinang. The algorithm will be run using MatlabR2011a.
1.6 Significance of the Study

From this study, it is hope that we can detect the edges of brain and breast tumor on medical resonance image (MRI). Other than that, the numerical analysis results can be the measurement in proving that AGE method is the best iterative method with accuracy (2, 4) than Gauss Seidel method with accuracy (2, 2).

1.7 The Organization of the Dissertation

This dissertation consists of six chapters. Chapter 1 describes the introduction of active contour models. In this chapter, we included the problem formulation, active contour model under consideration, objectives, scope, and significance of the research.

Chapter 2 focuses on the literature review. This chapter describes the use and application of GAC model by different researchers year by year. There also have descriptions about AOS scheme, finite difference method, Gauss Seidel method, and AGE method. We also explain briefly about the numerical analysis of sequential algorithm and the computational platform used in this research. At the end of the chapter, we show the chart of our research scope.

Chapter 3 describes the discretization process for GAC-AOS model by using finite differences method. From the discretized version of GAC-AOS, we derived the linear system equations. Because of the AOS scheme, the linear system can be solves for two directions separately. At the end of the chapter, we explain the flowchart of the sequential algorithm for edge detection problem on MRI image.

In Chapter 4, we describe the solution of tridiagonal and diagonal matrix system using AGE and GS methods. We show how the formulation of AGE and GS
method could solve the matrix system for two directions which are \(x \)-direction and \(y \)-direction. We also included the computational molecule for each AGE and GS method.

Chapter 5 presents the results of edge detection on MRI images. We analyse the results based on number of iterations, time execution, root mean square error, rate of convergence, accuracy and computational complexity. All the numerical results are shown in the form of table while the visualization results of the captured edge of tumor by contour line are shown by images.

The last chapter is the Chapter 6. In this chapter, we state the conclusions of this research based on the results that we showed in Chapter 5 and relate them with our objectives in Chapter 1. Then, there are some suggestions and recommendations for the future researchers.
REFERENCES

Rosdiana, S. (2012). *Two Dimensional Active Contour Model on Multigrids For Edge Detection of Images*. Master of Science, Universiti Teknologi Malaysia, Skudai.

