ADOMIAN DECOMPOSITION METHOD FOR TWO-DIMENSIONAL
NONLINEAR FREDHOLM INTEGRAL EQUATION OF THE SECOND
KIND

WAN SERI NURULHUDA BINTI WAN MOHAMMAD AYUB

This dissertation is submitted in partial fulfillment of the requirements for the
requirements for the award of the degree of Master of Science (Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2013
To my beloved parents

Wan Mohammad Ayub bin Wan Ismail

and

Rohani binti Mohamad.
ACKNOWLEDGEMENT

First for all, I wish appreciation to my supervisor, Associated Professor Dr. Ali Abd Rahman for his invaluable supervisor, patience and guidance throughout the completion of this dissertation. He has provided me with many precious ideas and professional suggestions.

I would also like to thank the Mathematics Department, Faculty of Science, UTM, for providing the facilities pivotal in completing the study

Last but not lease, I would like to dedicate the heartfelt gratitude to my beloved family and friends for their encouragement and constant support, directly or indirectly throughout the process of completing my dissertation.
Nonlinear phenomena’s that appear in many applications in science fields such as fluid dynamic, plasma physics, mathematical biology and chemical kinetics can be modeled by integral equation. Nonlinear integral equation usually produces a considerable amount of difficulties. This problem can be handling with some method such as Adomian decomposition method (ADM) and modified Adomian decomposition method (MADM). In this research, ADM and MADM are applied to solve two-dimensional nonlinear Fredholm integral equation of the second kind (FIE). We used ADM to find the exact solution and MADM to find the numerical approximation. From the observation with some example are presented in this research, the first five terms convergent numerical approximations give the good approximation.
ABSTRAK

# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of the Study 1

1.2 Statement of the Problem 4

1.3 Objectives of the Study 5

1.4 Scope of the Study 5
2 LITERATURE REVIEW

2.1 Introduction 7

2.2 Fredholm Integral Equation 8

2.3 Adomian Decomposition Method (ADM) 9

2.3.1 Adomian Polynomial 10

2.3.2 Noise Terms 12

2.4 Modified Adomian Decomposition Method (MADM) 15

2.5 One-Dimensional Linear Fredholm Integral Equation of the Second Kind 18

2.6 Two-Dimensional Nonlinear Fredholm Integral Equation of the Second Kind 22

2.7 Convergence Analysis 24

3 THE MATHEMATICAL METHODS OF FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

3.1 Introduction 25

3.2 Adomian Decomposition Method 26

3.3 Modified Adomian Decomposition Method 30

3.4 Convergence Analysis of ADM and MADM 33

3.5 Research Design and Procedure 37
3.5.1 Algorithm of Standard ADM for
2-D Nonlinear FIE of the Second Kind 37

3.5.2 Algorithm of the MADM for
2-D Nonlinear FIE of the Second Kind 39

3.4 Research Planning and Schedule 27

4 NUMERICAL RESULTS AND DISCUSSIONS

4.1 Introduction 42

4.2 Numerical Result for One-Dimensional
Nonlinear FIE of the Second Kind 43

4.2.1 The Standard ADM 44

4.2.2 The MADM 45

4.3 Numerical Result for Two-Dimensional
Linear FIE of the Second Kind 49

4.3.1 The Standard ADM 49

4.4 Numerical Result for Two-Dimensional
Nonlinear FIE of the Second Kind 52

4.4.1 Example 1 52

4.4.1.1 The Standard ADM 53

4.4.2 Example 2 56

4.4.2.1 The Standard ADM 57

4.4.3 Example 3 59

4.4.3.1 The Standard ADM 60
5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction 69
5.2 Summary 70
5.3 Conclusions 71
5.4 Recommendations 72

REFERENCE 73
### LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Comparisons between exact solution and numerical solution for One-Dimensional Nonlinear FIE of the second kind</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparisons between exact solution and numerical solution for Two-Dimensional Nonlinear FIE of the Second kind</td>
<td>67</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The exact solution ( u(x, y) = x \sin(y) )</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>The exact solution ( u(x, y) = x^2 e^y )</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>The exact solution ( u(x, y) = \frac{1}{(1 + x + y)^2} )</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>The numerical solution ( \sum_{n=0}^{4} u_n )</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

$\lambda$ - Parameter

$\alpha, \beta$ - Spatial variable

$H$ - Hilbert space

$K(x,t)$ - Kernel

$\|x\|$ - Norm of $x$

$\alpha$ - Constant

$\Omega$ - Finite interval $[a, b] \subseteq \mathbb{R}$

$\mathbb{R}$ - Real number

$\mu(t)$ - Lebesgue measure

$F[u(x,t)]$ - Nonlinear function

$\hat{u}_i(\omega, t)$ - Fourier transform
# LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MATHEMATICA 7.0 for One-Dimensional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonlinear FIE of the second kind</td>
<td>77</td>
</tr>
<tr>
<td>B</td>
<td>MATHEMATICA 7.0 for Two-Dimensional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linear FIE of the second kind</td>
<td>81</td>
</tr>
<tr>
<td>C</td>
<td>MATHEMATICA 7.0 for Two-Dimensional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonlinear FIE of the second kind</td>
<td>83</td>
</tr>
<tr>
<td>D</td>
<td>MATHEMATICA 7.0 for Two-Dimensional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonlinear FIE of the second kind</td>
<td>85</td>
</tr>
<tr>
<td>E</td>
<td>MATHEMATICA 7.0 for Two-Dimensional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonlinear FIE of the second kind</td>
<td>86</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

An integral equation is an equation in which the unknown function $u(x)$ appears under an integral sign. According to Bocher [1914], the name integral equation was suggested in 1888 by du Bois-Raymond. A general example of an integral equation in $u(x)$ is

$$ u(x) = f(x) + \int K(x,t)F[u(t)]dt $$

(1.1)

where $K(x,y)$ is a function of two variables called the kernel of the integral equation.

The integral equation can be classified into two classes. First, it is called Volterra integral equation (VIE) where the Volterra’s important work in this area was done in 1884-1896 and the second, called Fredholm integral equation (FIE) where the Fredholm’s important contribution was made in 1900-1903. Fredholm developed the theory of this integral equation as a limit to the linear system of equations.
There are many problems which can be modeled using integral equation. Examples are as following:

i. Population competition

\[ u(x) = f(x) + \int_a^b K(x - t, u(s, t))u(t)dt \]

ii. Quantum scattering: close-couple calculations

\[ u(x) = f(x) - \lambda \int_0^\infty K_1(x, z) \int_0^\infty K_2(z, t)u(t)dtdz \]

iii. Currents in a superconducting strip

\[ f(x) = \frac{1}{\pi} \int_0^1 \frac{t - x}{(t - x)^2 + a^2} u(t)dt \]

iv. Flow round a hydrofoil

\[ u(x) = f(x) + \lambda \int_c K(x, t)u(t)dt \]

The most general linear integral equation in \( u(x) \) can be written as the following

\[ h(x)u(x) = f(x) + \lambda \int_a^{b(x)} K(x, t)F[u(t)] dt \] (1.2)

where \( \lambda \) is a scalar parameter. The integral equation is said to be singular if either the domain \( a \leq x \leq b, \ a \leq t \leq b \) in equation (1.2) of definition is infinite, or if the kernel, \( K(x,t) \) has a singularity within its region of definition.
**Definition 1**  (Chama Abdoulkadri, [10])

Let $\Omega$ be a measurable set in a measurable space $D$, and let $\mu$ be a positive measure defined on $D$. The Fredholm integral equations divided into two groups, referred to as Fredholm integral equations of the first and second kind. It has the following general expression:

$$\int_{\Omega} K(x,t,u(t))d\mu(t) = F(x,u(t))$$  \hfill (1.3)

where $K$ and $F$ are known functions. $K$ is called the kernel of the integral equation, $\Omega$ is a finite interval $[a,b] \subseteq \mathbb{R}$ and $\mu(t)$ become a Lebesgue measure defined by $d\mu = dt$.

Consider Fredholm integral equation (FIE) of the following form

$$a(x)u(x) - \int_{\Omega} K(x,t,u(t))d\mu(t) = f(x)$$  \hfill (1.4)

It satisfies the following two conditions:

a) $a$, $K$, and $F$ are known functions.

b) $u$ is an known function to be determined.

If $a(x) \equiv 0$ for all $x$, the equation is FIE of the second kind.

If $a(x) \neq 0$ the equation can be written as

$$u(x) = f(x) + \int_{\Omega} K(x,t,u(t))d\mu(t)$$  \hfill (1.5)
In the previous researcher, Adomian decomposition method has been used for solving the Volterra integral equation of the second kind. In this research we seek to extend the application of Adomian decomposition method to solving the Fredholm integral equation of the second kind.

1.2 Problem Statement

 Recently, the Adomian decomposition method (ADM) and modified Adomian decomposition method (MADM) has been applied for solving systems of linear and nonlinear Volterra integral equation of the second kinds [6, 7].

 In [8] this method gives a better result when applied to the Volterra integral equation and it is shown in [11]. In this dissertation, we try to solve the method to solving two-dimensional Fredholm integral equation (FIE) of the second kind in \( u(x,y) \). Xie.W and Lin.F [22], stated that

\[
 u(x, y) = f(x, y) - \int_0^b \int_a^c K(x, y, s,t)F[u(s,t)]dsdt \quad (x, y) \in D
\]

(1.6)

is a two-dimensional FIE of the second kind.

where \( K(x, y, s, t) \) is a kernel and \( u(x, y) \) is in \( D = [a, b] \times [c, d] \).

Convergence of the methods will also be studied.
1.3 Objectives

The objectives of this study are as follows:

1) To study the concept of Adomian decomposition method and modified Adomian decomposition method for solving two-dimensional nonlinear Fredholm integral equation of the second kind.

2) To design an algorithm to find the exact solution of two-dimensional nonlinear Fredholm integral equation of the second kind using Adomian decomposition method.

3) To design an algorithm to generate the numerical solution of the two-dimensional Fredholm integral equation of the second kind using modified Adomian decomposition method.

4) To find the convergence of the Adomian decomposition method when applied to a systems of Fredholm integral equation of the second kind.

1.4 Scope of the study

This research will focus on the two-dimensional nonlinear Fredholm integral equation for the second kind. This study will be limited to finding the exact solution and convergence using Adomian decomposition method or the modified Adomian decomposition method. We will use MATHEMATICA 7.0 software to implement the algorithm in this research.
1.5 Significance of study

Recently, Adomian decomposition method and modified Adomian decomposition method were popular among the researchers who studied integral equations. From the findings this dissertation, it is hoped that the present work can be used as a reference for the future study.

1.6 Project Outline

This study consists of five chapters, which are Chapter 1, Chapter 2, Chapter 3, Chapter 4 and Chapter 5. In Chapter 1, discuss about the background of the study, the problem statement, the objectives, the scope of the study and the significance of this study to the other researcher.

Chapter 2 explained some literature and previous work that had been done by other researchers. Chapter 3, the method which will be used in this study and analyzed using some examples of Fredholm integral equations. It consists of the exact and numerical solutions of two-dimensional Fredholm integral equation of the second kind and also the error of the method.

In Chapter 4, the results obtained from this study are summarized. Finally, in Chapter 5, the conclusions and recommendations for further research given.
REFERENCES


