SINGLE MODE RIDGE WAVEGUIDE USING HYBRID ORGANIC-INORGANIC SOL-GEL

AMIRJAN BIN NAWABJAN

UNIVERSITI TEKNOLOGI MALAYSIA
SINGLE MODE RIDGE WAVEGUIDE USING HYBRID ORGANIC-INORGANIC SOL-GEL

AMIRJAN BIN NAWABJAN

A thesis submitted in the fulfilment the requirement for the award of the degree of Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

MARCH 2012
Specially dedicated to my beloved parents, my wife, Nurul Ain, and for all that supported me throughout finishing this thesis. All the continuous support, prayers, and understanding are appreciated.
ACNOWLEDGEMENT

Alhamdulillah, all praise to Allah S.W.T., for His guidance, perseverance and grace that fully assist me in every stage of this research work and finally come out with this essential and valuable manuscript.

It is my pleasure to express my deepest gratitude to my supervisors, Dr Mohd Haniff Ibrahim and Associate Professor Dr. Norazan Mohd Kassim and for their moral support, friendship and guidance during the critical period of this research. I am very much indebted for their effort and enthusiasm in reading the manuscript and commenting on the thesis. My appreciations are extended to my fellow researcher, Ahmad Sharmi Abdullah that helped me a lot during this research.

I am very much indebted to my external supervisor, Dr Zahid Abdul Malek from Advanced Material Research Centre, Kulim for his encouragement and understanding. His advice on the material itself helped a lot in finishing the project. Special acknowledgment is dedicated to his fellow researchers, Tarmizi and Shamsul for their support, assistance and friendship which makes my stay in AMREC as memorable one.

Finally, the financial support from Universiti Teknologi Malaysia and AMRECS’s technical assistance are kindly appreciated.
ABSTRACT

Optical waveguides are structures that confine and direct optical signals in a region of higher effective index than its surrounding media. For integrated optics and photonic applications, it is often of importance to prepare waveguides in the form of thin film and channel structures. Hybrid sol-gel material is one of the interesting material in waveguide fabrication as it possess advantages such as low processing temperature, low fabrication cost, and ability of refractive index tuning. Main novelty of this research lies in the development of VTES based optical waveguides. Moreover, refractive index of selected material can be easily tuned by adjusting composition of TTBu in the synthesization stage. Behavior of light propagation and the confinement of light in a hybrid VTES based optical waveguide had been investigated. The characteristics of the waveguide had been simulated by BeamProp™ to obtain the optimum structure for waveguide fabrication. Planar slab waveguides and single mode straight waveguides had been fabricated using low cost photolithographic techniques and wet chemical etching processes. The properties of the hybrid sol-gel material and the fabricated waveguides had been characterized. The experimental results have demonstrated optical waveguiding in the sol-gel material. Attenuation of single mode optical waveguides at 1310 nm and 1550nm with waveguide losses of 1.6dB/cm and 6.7 dB/cm have been obtained respectively. Even though the losses are rather high, the VTES based hybrid sol-gel material is suitable as a waveguiding material in the optical interconnect situations by optimizing the fabrication process.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>AKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
 1.1 Research Background 1
 1.2 Problem Statement 4
 1.3 Research Objectives 5
 1.4 Project Scope 6
 1.5 Research Methodology 7
 1.6 Thesis Outline 10

2 OPTICAL WAVEGUIDE AND PROPAGATION 12
 2.1 Introduction 12
 2.2 Optical Integrated Circuit 12
2.3 Theory of Optical Waveguides 13
 2.3.1 Maxwell Equation 14
 2.3.2 Propagation Constant, β 19
 2.3.3 Cut-off Thickness 20
2.4 Modeling and Analysis of Channel Waveguide 21
2.5 Summary 26

3 SOL-GEL BASED OPTICAL WAVEGUIDES 27
 3.1 Introduction 27
 3.2 Materials in Integrated Optics 27
 3.3 Sol-gel Based Materials 30
 3.3.1 Inorganic Route 31
 3.3.2 Hybrid Organic-Inorganic route 32
 3.4 Advantages of Sol-Gel Technology 32
 3.5 Sol Preparation 33
 3.6 Chemistry of Sol-Gel 34
 3.7 Conclusion 39

4 WAVEGUIDE FABRICATION 40
 4.1 Introduction 40
 4.2 Requirement in Fabrication Process 40
 4.3 VTES Based Hybrid Organic-Inorganic Ridge Fabrication Process 41
 4.3.1 Precursors Synthesis 41
 4.3.2 Substrate Preparation 43
 4.3.3 Film Deposition 45
 4.3.3.1 Spin Coating 45
 4.3.4 Pre-Baking Process 47
 4.3.5 UV-Photolithography 48
 4.3.6 Wet Chemical Etching 50
 4.3.7 Post-Bake 50
 4.3.8 Natural Cleaving 51
 4.4 Waveguide Characterization 51
4.5 Film Thickness and Refractive Index Measurement

4.5.1 Prism Coupling Method

4.6 Surface Roughness Measurement

4.6.1 Atomic Force Microscope (AFM)

4.7 Ridge Waveguide Profile Observation

4.7.1 Scanning Electron Microscope (SEM)

4.8 Light Launching Process (Loss Measurement)

4.9 Summary

5 RESULT AND DISCUSSION

5.1 Introduction

5.2 Cutoff Thickness

5.3 BeamProp™ Simulation

5.4 Prism Coupling Measurement Result

5.5 AFM Measurement Result

5.6 Geometrical Result of the Waveguide

5.6.1 SEM Measurement Result

5.6.2 Optical Microscope Inspection

Result

5.7 Loss Measurement Result

5.8 Summary

6 CONCLUSION

6.1 Thesis Contribution

6.2 Future Work

REFERENCES

Appendices A-C
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Colloidal Mixtures</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Some precursors used by various researchers</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Refractive index of the material for different wavelengt</td>
<td>63</td>
</tr>
<tr>
<td>5.2</td>
<td>Input and output power result of loss measurement</td>
<td>71</td>
</tr>
<tr>
<td>5.3</td>
<td>Hybrid materials used by other researchers</td>
<td>71</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowchart of the research</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic structure of slab waveguide</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Common waveguide geometries</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic slab optical waveguide structure</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic of wave propagation in a bounded medium</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Guided mode TE field distribution</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>Axis, meshes, and grid line for finite difference calculation (cross section of the waveguide)</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Trapezoidal cross section of the waveguide</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation process of hybrid organic-inorganic sol-gel</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Hydrolysis process of the sol-gel</td>
<td>34</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Condensation process of silica</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Formation of siloxane bond, Si-O-Si</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Formation of SiO₂ bond</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Different form of final structure</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Glove box to do the synthesization</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Hybrid sol gel preparation process</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Cleaning steps of substrate</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Ultrasonic bath model BRANSON</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Cleaning Surfactant decon 90</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Spin speed vs thickness</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Spin coater model WS-400B-6NPP/LITE</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Spin coating Process</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Oven for pre baking process</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>UV-photolithography process of slab structure</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>UV-exposure mode USHIO SP-3</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Rapid Thermal Processing Machine</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Prism coupler assembly</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.14</td>
<td>Phase matching condition at prism-waveguide interface</td>
<td>54</td>
</tr>
<tr>
<td>4.15</td>
<td>Nikon Metallurgical Microscope Eclipse Model L150 set in the Photonics Laboratory, UTM</td>
<td>57</td>
</tr>
<tr>
<td>4.16</td>
<td>Equipment setup for light launching process</td>
<td>57</td>
</tr>
<tr>
<td>5.1</td>
<td>Single mode ridge structure for 1310nm</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Single mode ridge structure for 1550nm</td>
<td>61</td>
</tr>
<tr>
<td>5.3</td>
<td>Cross section structure of the simulated waveguide</td>
<td>62</td>
</tr>
<tr>
<td>5.4</td>
<td>Mode profile pattern for 1310 nm wavelength</td>
<td>62</td>
</tr>
<tr>
<td>5.5</td>
<td>Mode profile pattern for 1550 nm wavelength</td>
<td>63</td>
</tr>
<tr>
<td>5.6</td>
<td>Refractive index measurement result</td>
<td>64</td>
</tr>
<tr>
<td>5.7</td>
<td>Surface morphology of sol-gel material</td>
<td>65</td>
</tr>
<tr>
<td>5.8</td>
<td>Surface roughness measured using AFM (a) with BIE (b) without BIE</td>
<td>66</td>
</tr>
<tr>
<td>5.9</td>
<td>Planar/Slab cross section</td>
<td>67</td>
</tr>
<tr>
<td>5.10</td>
<td>Ridge waveguide (a)cross section (b) above structure</td>
<td>67</td>
</tr>
<tr>
<td>5.11</td>
<td>Reference image and compared waveguide cross</td>
<td>68</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.12</td>
<td>Close approximation model adopted for fabricated waveguide structure</td>
<td>69</td>
</tr>
<tr>
<td>5.13</td>
<td>Light launching process using cut-back method</td>
<td>70</td>
</tr>
<tr>
<td>5.14</td>
<td>Near Field output pattern of the laser for 1310 nm and 1550 nm</td>
<td>70</td>
</tr>
<tr>
<td>5.15</td>
<td>Detected power VS wavelength for cut back calculation</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(n \) - Refractive index
\(T \) - Thickness
\(E \) - Time dependent electric field
\(H \) - Time dependent magnetic field
\(D \) - Electric displacement
\(B \) - Magnetic induction
\(J \) - Current density
\(P \) - Charge density
\(\text{TE} \) - Transverse electric modes
\(\text{TM} \) - Transverse magnetic modes
\(k_0 \) - Vacuum wave vector
\(c \) - Speed of light
\(\lambda \) - Wavelength of the light source
\(\beta \) - Propagation constant along the \(z \) direction
\(\theta \) - Angle
\(t_{co} \) - Cut-off thickness
\(m \) - Modes
\(\Delta x \) - Rectangular mesh size at the \(x \) direction
\(\Delta y \) - Rectangular mesh size at the \(y \) direction
\(B \) - Normalized propagation constant
\(L \) - Length
\(E \) - Dielectric constant
\(\mu \) - Permeability
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publication in this Work</td>
<td>82</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB script for computing of normalized propagation constant, effective index and TE field distribution</td>
<td>84</td>
</tr>
<tr>
<td>C</td>
<td>MATLAB script for computing of cutoff thickness</td>
<td>85</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Advances in electronics today in various fields enable the production of low cost integrated circuits in mass amount. However, bandwidth demands outgrowing performance of electronic in many applications. Telecommunication is field that clearly suffers from this limitation. Bandwidth expansion is desperately needed in the telecommunication applications. To overcome the bandwidth limitation, new communication revolution based on photonic technology was performed. Surely, photonic application has an extremely large information carrying capacity and very low transmission losses. Very small photonic devices can be faster and more reliable than a standard electronics. Photonic technology was successfully demonstrated in various applications including broadband communication. Originated from the invention of laser in 1958, photonic technology started to widely been applied. Coaxial cables were replaced with glass fibers. At the beginning, major problem that occurred from using optical fiber is the high attenuation value. However, if the optical fiber attenuation can be reduced to 20dB/km, it will be practical medium for communication [1]. In September 1970, a glass fiber with the attenuation less than 20 dB/km was successfully developed by Corning in the USA. With this achievement, optical fiber becomes viable technology to be used in telecommunication. The first
field deployment of fiber communication system used multimode fibers with laser operating at wavelength of 850 nm. The system can transmit several kilometer with optical losses about (2-3) dB/km. It is then improved with laser operating at 1310 nm where optical loss was reduced to 0.5 dB/km in a single mode fiber (SMF). Finally, another wavelength window, 1550 nm was developed and SMF has minimal optical loss of 0.15 dB/km.

With the optical networks becomes billion dollar business, the bandwidth size becomes more and more demanding. For instance, application that only enabled by high speed optical network such as web browsing, Fiber to the Home (FTTH), medical image access, also broadband services needs wide bandwidth. When these demands become crucial, it forces researchers to search for new method of sending and processing information. A promising approach to increase the bandwidth in the network links are integrated optical (IO) interconnections. Using integrated optics, huge amount of information can be sent. Not only that, this technology is capable of high yield, but low cost manufacturing while delivering high performance and unique functions. IO circuits started when S.E. Miller from Bell Laboratories proposed the concept of integrated optics in 1969 [2]. He concerned with hybrid type integrated circuit, that is, the dielectric substrate IO circuits.

In the early 1970s, various material and processing technique was used to fabricate waveguide. However to realize an IO circuit, the optical devices or components therein have to be compact, small, reliable, with high mechanical and thermal stability, low power consumption and able to be integrated on a common substrate material [3]. Because of this, it is worth to state that the major performance of IO circuits relies on its waveguiding components. These requirements encourage numerous of studies on the thin film fabrication techniques as well as the new optical materials that suitable for this IO circuits [3].

Finding suitable material for use in optoelectronic application has started widely from 1970s due to need of material that can yield high performance output,
nevertheless, it offers low cost production. Few materials with different advantages have been explored and used for the fabrication of optical waveguides, as well as the integrated components. For instance, III-V semiconductors (InP, GaAs), silica based material, polymer, lithium niobate (LiNbO3), silicon based materials, and also sol-gel material. All of these materials have their own advantage and disadvantage for the use in optoelectronic application. For example, silica has been a favorable material due to its high thermal stability, small coefficient of thermal expansion and low attenuation in the two main telecommunications windows (1.3 and 1.55 µm) [4-5]. However they utilize expensive, high temperature thermal treatment which is over 1000°C, and also time-consuming processes such as chemical vapour deposition (CVD), vacuum deposition (VD), flame hydrogen deposition (FHD) and reactive ion etching (RIE) [6]. Alternatively, polymer materials put forward the low cost and simple step of optical devices fabrication [7]. They involve low temperature processing; have the ability of refractive index tuning, and able to produce flexible but strong film with low polarization sensitivity [8]. These materials however are prone to aging problems, poor mechanical resistance and low thermal stability which reduce its long-term reliability [9].

All these limitation and problems with silica and polymer lead to development of glass-like organic–inorganic hybrid materials due to their robustness and largely adjustable optical properties [10]. Sol-gel derived materials seem to offer material which properties range from pure silica glass to silicone rubber [11]. On top of that, sol-gel process is as well dealing with lower processing temperature and able to produce materials with high homogeneity and purity in several forms [12]. Started with just inorganic material with addition of titania (TiO₂) as part of sol-gel processing precursors, it evolved until the hybrid organic inorganic sol gel technique. The mechanical, optical and physical properties of this material have been widely studied [13]. Organic-inorganic hybrid sol-gel derived material has been discovered to be able to go about these drawbacks. The organic group that is introduced can functions as organic modifiers of the inorganic network and it can form the organic networks. These would lead to more flexible products and also decreases the problem of shrinkage significantly [14]. Other advantages and properties of this organic-inorganic hybrid sol gel material will be further discussed in chapter three.
Many types of fabrication techniques are proposed and currently being employed to fabricate these waveguides. These include classes of deposition techniques, ion exchange, thermal diffusion, ion implantation, epitaxial growth, lithographic patterning, dry etching and wet etching. However, the selections of these techniques are highly influenced by two reasons, suitability of material systems and cost effective deployment. For example, deploying dry etching technique is far more costly if we compare with wet etching technique. As for mass production, of course it will not be a practical approach. Therefore, the technique that can yield high productivity yet cost-effective was selected for this research.

With the rapid advent in the optical integrated circuit, importance of planar waveguide and channel waveguide, which are the fundamental element for realizing IO circuit, has been recognized. Hybrid organic-inorganic sol-gel based material which has huge advantage in term of processing temperature, cost effective, and largely adjustable optical properties chosen to be the material of interest. Knowledge and hand-on skills that gained from this research are needed for the future work of fabricating advanced passive and active devices.

1.2 Problem Statement

Motivated from the cost-effective nature of hybrid organic-inorganic sol-gel material, precursors chosen was vinyltriethoxysilane (VTES, Sigma-Aldrich, 99%) \([\text{H}_2\text{C} = \text{CHSi(OEt)}_3]\), tetraethoxysilane (TEOS, 98% Fluka), and tetrabutoxytitanate (TTBu, 99% Across) based or what we can call VTT sol is chosen as the material of interest in this research. VTES act as organic component as it contains C=C in its structure. Primarily, this VTT sol is employed in the development of single mode optical channel waveguides which are the fundamental structure of any optical
devices and further can be applied in the development of optical passive and active devices such as MMI and optical switches.

Based on previous literature surveys, it was found out that the proposed ridge waveguide devices based on the photosensitive VTES precursor can be considered as the first ever development work. As such, it is significant to mention the novelty of this research which can contribute to the enhancement of knowledge, predominantly in the field of sol-gel based photonic devices. VTES was chosen because of its shorter organic chain and it contributes to lower propagation loss [15].

TEOS, photopatternable organic component with shorter organic chain VTES and refractive index modifier TTBu will be used to synthesis the hybrid organic-inorganic VTES/TEOS/TTBu (VTT) sol. Benzoin Isobutyl Ether (BIE, Sigma-Aldrich, 98%) and Aluminum Acetylacetone (AlAA, Sigma-Aldrich, 99%) as photoinitiator and catalyst respectively. The waveguides will be fabricated by means of spin coating, UV micropatterning, and wet chemical etching technique.

1.3 Research Objectives

The main objective of this research is to fabricate a single mode ridge waveguide using hybrid organic-inorganic sol-gel technique. In order to achieve this main objective:

1) Characterization of hybrid organic-inorganic sol-gel material based on VTES for use in photonic application was done.

2) Development and characterization of single mode ridge waveguide based on VTES in term of refractive index, thickness, and propagation loss was performed.
Single mode ridge waveguide fabricated using hybrid organic-inorganic sol-gel processing method, will be characterized in term of its performance. The fabricated waveguide will be further used to design an active device such as MMI device.

1.4 Project Scope

It is reasonably difficult for a single research with limited time constraint to cover the broad topic of the research. However, owing to the fact that a research is a continuing effort, the conducted research was focused on the scope as determined.

The literature review was done for the sake of understanding the research requirement, related tools, equipment, and material of interest. Through this, the basic understanding of the research was overviewed. The fundamental knowledge of the optical waveguide such as concept, and analysis method were studied. Mathematical modeling was done to gain the best structure and the ability of the waveguide to confine light. Through this, the optimal design that will guide the only single mode transmission can be obtained and simulated through software.

In the first stage of the waveguide development, suitable material portion of VTES, TEOS, and TTBu was investigated to yield the best material for fabrication. Planar structure was developed first to investigate the refractive index of the material. Equipments and parameters that affect the structure was investigated and controlled. For example, thickness of the resulting waveguide can be controlled by varying the spin coating speed. The best conditions for lithography and wet etching process was studied in order to gain the best resolution of the ridge waveguide structure.
Passive optical waveguides were fabricated and characterized. Refractive index measurement, geometrical inspection, structure profile, and light launching were successfully done. Fabricated ridge structure has demonstrated the ability to confine only single mode propagation, with low propagation loss.

1.5 Research Methodology

Before proceeding with the project, the planning or methodology has taken into account. The steps on how the research will take place were done carefully. Each step, starting from the simulation until loss measurement, was planned to gain better understanding of the project. Moreover, the methodology will keep research on track.

As for this project, first of all, the simulation was done to get the basic idea of ridge waveguide structure. Since the desired structure is the single mode ridge waveguide structure. However, in order for the simulation to be done, the refractive index value of the material must be obtained. Therefore, from the literature review, the approximate value of the materials refractive index was taken. The value was then fine tuned when the slab structure fabricated.

The slab structure was fabricated next for the refractive index and thickness measurement. From the measurement using prism coupling method, the exact refractive index value of the material was obtained. This value was then used to remodel the structure using the simulation software.

From the simulation, the exact dimension of single mode structure was obtained. The simplest structure of the ridge waveguide was fabricated. The fabrication process was varied in order to yield the finest structure of the ridge
waveguide. Parameters such as the drawing speed, the exposure time, the etching time, and heat treatment temperature was varied for the purpose. Finally, the best parameters of the experiments was recorded and used for later experiments.

Thickness and refractive index was measured using spectroscopic reflectometer in the earlier stage, followed by prism coupling method for precise value. Geometrical inspection of the structure was done by scanning electron microscope (SEM). The surface roughness was measured using atomic force microscope (AFM).

Finally, the light launching was done to measure the propagation loss of the material. This final step will show the suitability of the material in photonic application. Two different wavelengths were used in the propagation loss measurement, 1310 nm and 1550 nm, pertaining to main telecommunication windows in the photonic application.

Figure 1.1 shows the flowchart of the whole process of the hybrid organic-inorganic sol-gel ridge waveguide fabrication and characterization.
Figure 1.1 Flowchart of the research
1.6 Thesis Outline

Chapter 1 explains the brief history of the development in photonic technology. Research motivation, overview of research, objectives of research, and goals of the research were presented.

Chapter 2 consists of basic theory of optical waveguide, and analysis method. A simple mathematical modeling of the ridge waveguide was performed.

In chapter 3, several materials which are under intensive investigation for integrated circuit purposes were discussed. The detailed literature review was done, by providing the recent related work done by other researchers. The properties of VTES based organic-inorganic sol-gel material properties which is the material of interest in this research were presented.

The full fabrication and measurement procedure to fabricate the ridge waveguide is described in detail in chapter 4. The condition that must be fulfilled, the problem that occurs during fabrication process and precaution taken in fabrication process also presented in this chapter.

Results and discussion of the research are shown in Chapter 5. Data verifications were done in the sense of comparing our modeling and simulation result. Measurement results of fabricated waveguides are shown in this chapter.

Finally in Chapter 6, a concluding remarks and suggestions for future work are given. The contribution of this thesis also stated in this chapter. Fabrication skill
obtained through this research could be applied for the future development of active optical devices.
REFERENCES

