PERFORMANCE EVALUATION OF OFDM AND MC-CDMA BASED COGNITIVE RADIO SYSTEM

SALEM MOHAMMED SALEM BINDHAIQ

UNIVERSITI TEKNOLOGI MALAYSIA
PERFORMANCE EVALUATION OF OFDM AND MC-CDMA BASED COGNITIVE RADIO SYSTEM

SALEM MOHAMMED SALEM BINDHAIQ

This project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical- Electronics and Telecommunications)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2012
To
To my beloved mother and father,
To
To my brothers and sisters.
ACKNOWLEDGEMENT

In The Name Of ALLAH, The Most Beneficent, The Most Merciful

All praise is due only to ALLAH, the lord of the worlds. Ultimately, Only ALLAH has given us the strength and courage to proceed with our entire life. His works are truly splendid and wholesome, and his knowledge is truly complete with due perfection.

I am particularly appreciative of my supervisor, Assoc. Prof. Dr. Sharifah Kamilah Bt Syed Yusof for her invaluable supervision, guidance and assistance. She has provided me with some precious ideas and suggestions throughout this dissertation.

Besides that, my highly appreciation extended to my parents for their supporting, patience, love, prayer and sacrifice are unbounded during my study. I am also grateful to Al-Sheikh Eng. Abdullah Ahmad Bogshan for his financial support.

I am grateful for the help of my best friends. Among these are Dr. Hassan M. Bawazier and Mr. Redwan Shadad.
ABSTRACT

The present development of high data rate wireless applications has lead to extra bandwidth demand. However, finding a new spectrum bandwidth to accommodate these applications and services is a challenging task due to lack of spectrum resources. In fact, recent studies have shown that the spectrum are utilized inefficiently especially for conventional spectrum allocation. Therefore, in order to enhance spectrum efficiency, Federal Communications Commission (FCC) has proposed dynamic spectrum access (DSA) mechanism, where unlicensed users can opportunistically borrow unused spectrum from licensed owners. The radio that enables this concept is called Cognitive Radio (CR). Nevertheless, it is difficult for single transmission to get a large contiguous frequency spectrum block in DSA and this have significant impact on broadband and multi-carrier transmission systems such as Orthogonal Frequency Division Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MC-CDMA). This thesis investigates on non-contiguous OFDM (NC-OFDM) and non-contiguous MC-CDMA (NC-MC-CDMA) system. The implementation of NC-OFDM and NC-MC-CDMA systems provide high data rate via large number of non-contiguous sub-carriers without interfering to the existing transmissions by turning off the sub-carriers corresponding to these spectrum bands. This thesis evaluates Bit Error Rate (BER) performance of NC-OFDM and NC-MC-CDMA on mobile scenario where each propagation path will experience an apparent shift in frequency due to the relative motion between the transmitter and receiver while the number null sub-carriers is constant for all.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1
1.2 Statement of Problem 2
1.3 Objectives of the Study 2
1.4 Scope of the Study 3
1.5 Thesis Organization 3

2 LITERATURE REVIEW

2.1 Introduction 5
2.2 Multi-Carrier Transmission 7
 2.2.1 Principles of OFDM 8
2.2.2 Principles of MC-CDMA 12
2.3 Dynamic Spectrum Access Techniques 14
 2.3.1 Underlay and Overlay Spectrum Sharing Approaches 15
2.4 Brief on Non-Contiguous Transmission 16
2.5 Channel Models 18
 2.5.1 Additive White Gaussian Noise Channel 18
 2.5.2 Rayleigh Fading Channel 19
 2.5.3 Doppler Shift 21
2.6 Chapter Summary 21

3 METHODOLOGY
 3.1 Introduction 23
 3.2 OFDM Implementation with Cognitive Radio 24
 3.3 MC-CDMA Implementation with Cognitive Radio 26
 3.4 Performance Analysis 27
 3.5 Chapter Summary 28

4 RESULT AND DISCUSSION
 4.1 Introduction 29
 4.2 BER Performance Analysis 32
 4.2.1 NC-OFDM BER Calculation for 100 Hz Doppler Shift 33
 4.2.2 NC-MC-CDMA BER Calculation for 100 Hz Doppler Shift 33
 4.2.3 NC-OFDM BER Calculation for 80 Hz Doppler Shift 34
 4.2.4 NC-MC-CDMA BER Calculation for 80 Hz Doppler Shift 34
 4.2.5 NC-OFDM BER Calculation for 60 Hz Doppler Shift 36
 4.2.6 NC-MC-CDMA BER Calculation
5 CONCLUSIONS AND FUTURE WORK

5.1 Conclusion 40
5.2 Future Work 41

REFERENCES 43

Appendix A 46
Appendix B 50
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Spectrum holes</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>The impulse response of the channel for single carrier and multi-carrier</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Block diagram of an OFDM transceiver</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Block diagram of MC-CDMA transceiver</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Spectrum sharing approaches</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Non-contiguous OFDM sub-carriers</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>AWGN channel</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Time variant channel impulse response and channel transfer function with frequency selective fading</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>Block diagram of an NC-OFDM transceiver</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Block diagram of NC-MC-CDMA transceiver</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>BER calculation for NC-OFDM</td>
<td>32</td>
</tr>
<tr>
<td>4.2</td>
<td>BER calculation for NC-MC-CDMA</td>
<td>33</td>
</tr>
<tr>
<td>4.3</td>
<td>BER calculation for NC-OFDM at 100 Hz doppler shift</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>BER calculation for NC-MC-CDMA at 100 Hz doppler shift</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>BER calculation for NC-OFDM at 80 Hz doppler shift</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>BER calculation for NC-MC-CDMA at 80 Hz doppler shift</td>
<td>36</td>
</tr>
<tr>
<td>4.7</td>
<td>BER calculation for NC-OFDM at 60 Hz doppler shift</td>
<td>37</td>
</tr>
<tr>
<td>4.8</td>
<td>BER calculation for NC-MC-CDMA</td>
<td></td>
</tr>
</tbody>
</table>
at 60 Hz doppler shift
LIST OF ABBREVIATIONS

AWGN - Additive White Gaussian Noise
BER - Bit Error Rate
CDMA - Code Division Multiple Access
CP - Cyclic Prefix
CR - Cognitive Radio
D/A - Digital-to-Analog
DSA - Dynamic Spectrum Access
DFT - Discrete Fourier Transform
FCC - Federal Communications Commission
FFT - Fast Fourier Transform
HPA - High Power Amplifier
ICI - Inter-Carrier Interference
IDFT - Inverse Discrete Fourier Transform
IFFT - Inverse Fast Fourier Transform
ISI - Inter-Symbol Interference
MC-CDMA - Multi-Carrier Code Division Multiplexing
MCM - Multi-Carrier Modulation
NC-MC-CDMA - Non-Contiguous Multi-Carrier Code Division Multiplexing
NC-OFDM - Non-Contiguous Orthogonal Frequency Division Multiplexing
OFDM - Orthogonal Frequency Division Multiplexing
P/S - Parallel-to-Serial
PA - Power Amplifier
PAPR - Peak-to-Average Power Ratio
PSK - Phase Shift Keying
QAM - Quadrature Amplitude Modulation
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RCC</td>
<td>Radio Control Channel</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>S/P</td>
<td>Serial-to-Parallel</td>
</tr>
<tr>
<td>SDR</td>
<td>Software Defined Radio</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>UWB</td>
<td>Ultra Wide Band</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NC-OFDM Simulation Program</td>
<td>46</td>
</tr>
<tr>
<td>B</td>
<td>NC-MC-CDMA Simulation Program</td>
<td>50</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Due to the advancement of new wireless applications, as well as development of existing wireless services, demand for extra bandwidth has been on rise [1,10]. As a result, the possibility of spectrum scarcity becomes more of a reality. In other words, emerging technologies and with the ever increasing number of wireless devices, the radio spectrum scarcity is increased every day [19].

There is a spectrum allocation called Command-and-Control came to prevent unlicensed access to access the spectrum, it is defined by government regulatory agencies. Measurements studies indicated that big part of the spectrum is in a rare use while some parts are in a heavy use most of the time and frequency [2,3].

Federal Communications Commission (FCC) is working on the unlicensed users to borrow spectrum from incumbent license users, this can be done by concept knows as Dynamic Spectrum Access (DSA). Wireless communication should be agile to perform dynamic spectrum access such that spectrum efficiency can be improved while no interference occurred with neighbored user
transmissions. To exploit frequency and time gaps which are not occupied by license holders, such a communication technique called Cognitive Radio. It can be defined as a smart wireless system that is aware of its surrounding environment through sensing and measurements [4, 5].

The common digital communication techniques of multi-carrier transmission such as Orthogonal Frequency Division Multiplexing (OFDM) and Code Division Multiplexing Access (MC-CDMA) are the most widely used technologies in current wireless communications systems. These techniques have the potential of fulfilling the requirements of cognitive radios inherently or with minor changes [15]. They provided an interest over other transmission technologies such as good spectrum efficiency, fading channel robustness, prevention of impulse interference, dealing with fading paths and frequency selective fading without channel equalization [20]. In addition, they have ability to turn off the sub-carriers which probably are close to the spectrum occupied by the incumbent users as to not allow any interference to current transmissions, enhance the spectrum efficiency by enabling second usage of the unused parts of the spectrum and addressing the issues of spectrum scarcity as well [19].

1.2 Statement of Problem

The problem behind this work is spectrum bandwidth shortage to send high data rate communication. It is very difficult to gain access to a large continuous block of frequency spectrum that is the limitation for high data rate transmission in mobile radio environment.

1.3 Objectives of the Study

The objectives of this study are:
1. To improve the spectrum efficiency in wireless communication.

2. To develop non-contiguous OFDM system and non-contiguous MC-CDMA system for supporting high data rate communication.

3. To evaluate the performance of NC-OFDM and NC-MC-CDMA in mobile radio environment.

1.4 Scope of the Study

The scope of the study in this project are:

- Conceptual Study
 Understand the concept of cognitive radio, OFDM and MC-CDMA. DSA model is shared using Overlay Spectrum sharing Approach with non-contiguous.

- Development and Analysis
 Develop OFDM and MC-CDMA based cognitive radio on dynamic spectrum access. Performance analysis of this project will consider performance evaluation such as Signal-Noise Ratio (SNR) and (BER) with doppler shift.

- Simulation
 The simulation tool used is Matlab.

1.5 Thesis Organization

This thesis is organized as follows:
In Chapter 2, a brief introduction to cognitive radio concept and basic principles of OFDM and MC-CDMA are presented. This chapter also overview of DSA techniques such as underlay and overlay approach to improve spectrum utilization efficiency and scarcity issue. Moreover, basic introduction to the non-contiguous transmission and channel models are also included.

In Chapter 3, methodology of OFDM and MC-CDMA implementation based on cognitive radio are discussed.

In Chapter 4, BER performance of NC-OFDM and NC-MC-CDMA is evaluated and viability of NC-OFDM and NC-MC-CDMA techniques for DSA with doppler shift.

In Chapter 5, the project final conclusions are outlined and future work directions are presented.
REFERENCES

