LANDSLIDE MONITORING USING GLOBAL POSITIONING SYSTEM AND INCLINOMETER TECHNIQUES

OTHMAN BIN ZAINON

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Geomatic Engineering)

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia

NOVEMBER 2011
DEDICATION

To my beloved parents, Hasnah Binti Ariffin and Zainon Bin Endot (1929-1998). Thank you for all the sacrifice, the love and courage that you give me all this while. I could never be at this level if it wasn't because of you.

To my brothers and sisters. Thank you for all the encouragement and support and love has been poured.

To my wife Roslina Binti Mohamed Touhid, the one that believes and have faith in me, thanks for the care and the unbreakable love...

To all my children Muhammad Khatimul A'fif, Muhammad Khatimul A'tif, Muhammad Khatimul A'rif, Puteri Darwisyah 'Afifah, Puteri Farisah 'Atifah, Muhammad Khatimul A'kif and Muhammad Khatimul Ahnaf.

Make this as an impetus and inspiration for success to achieve what is desired.

A million thanks to my supervisor Prof Sr.Dr. Wan Abdul Aziz Wan Mohd Akib for all the guidance support and the great knowledge you taught me. I really appreciate it...

I also would like to give my deepest thanks and appreciation to Nor Hadija Binti Darwin and those who have given their support, ideas and comments to complete this dissertation.

Thank you...
ACKNOWLEDGEMENT

With the name of ALLAH S.W.T., the most gracious and merciful creator.

Alhamdulillah, first of all I am grateful of ALLAH for the guidance and blessing that help me a lot in completing this dissertation. Without the help I received, I never could face the obstacles and challenge while finishing this dissertation.

I would like to give my deepest thanks and appreciation to my supervisor, Prof Sr Dr Wan Abdul Aziz bin Wan Mohd Akib for helping me through my research. He had sacrifice a lot of time to guide me despite his tight and busy schedule. Not only that, he had given me a lot of brilliant idea and supportive comments in making my project successful. Without his support, help and unstoppable guidance there’s no way I could complete my dissertation.

I also would like to thank all those involved in this project either directly or indirectly such as Miss Nor Hadija Binti Darwin, Mr. Azizan, Mr. Hairuddin, Mr. Aszwan, Mrs. Wati, and the entire research team for the effort and assists they gave me through this research. They contributed a lot in giving helping me during field and laboratory work. All the supportive comments and advise really help me a lot.

Last but not least, I would like to express my gratitude and appreciation to my family, all my friends and lecturers for giving me supports and help in my study. Thank you.
ABSTRACT

Landslide is one of the prominent geo-hazards that continuously affect many tropical countries including Malaysia, especially during the monsoon seasons. For the past 25 years, landslides have occurred throughout the country that caused property destruction and loss of life, especially near the hillside areas. A landslide monitoring scheme is therefore very crucial and should be carried out continuously. Various studies have been conducted to monitor landslide activities such as conventional geotechnical and geodetic techniques. Each of these techniques has its own advantages and limitations. Therefore, this study focuses on the effectiveness of the combination approach of GPS technology and inclinometer techniques for landslide monitoring. The study area is located at residential area Section 5, Wangsa Maju, Kuala Lumpur, Malaysia. In the first stage, the geotechnical data have been collected using Mackintosh probe whereby the laboratory test on disturbed soil sample has been carried out to identify the composition of the soil structures. Next, the probe test was also conducted to determine the soil layer and soil contents at the study area. The inclinometer instrument has been placed at five (5) selected monitoring points and nine (9) epochs of inclinometer measurements were made. At the same time, the GPS observations have also been carried out for nine (9) epochs separately using four (4) GPS techniques such as static, rapid static, single base Real Time Kinematic (RTK) and RTK network. This GPS network consists of four (4) control points and eleven (11) monitoring points. The GPS observations data were validated, processed and adjusted using four (4) adjustment software namely Trimble Geometry Operations (TGO) software, Topcon Tools, STARNET and GPS Constraint Program. Next, GPSAD2000 and Static Deformation programmes were used to analyse the displacement of the monitoring points. The results have shown that the GPS technique can be implemented with inclinometer technique to detect horizontal displacements up to ± 40 mm and vertical displacements less than ± 80 mm,
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxix</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxxi</td>
<td></td>
</tr>
</tbody>
</table>

1 | INTRODUCTION | 1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Aim and Objective of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Study</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Research Techniqueology</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Significant of Study</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Organisation of Thesis</td>
<td>9</td>
</tr>
</tbody>
</table>

2 | LANDSLIDE AND INVESTIGATION TECHNIQUES | 11 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Definition and Causes of Landslides</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Landslide Occurrence Factors</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>The Investigation Techniques</td>
<td>18</td>
</tr>
</tbody>
</table>
3 SCIENTIFIC TECHNIQUES IN LANDSLIDE DEFORMATION MONITORING

3.1 Introduction 32
3.2 Global Positioning System (GPS) 32
3.3 GPS Observation and Processing 36
3.4 GPS Measurement Techniques 41
3.4.1 Static Technique 42
3.4.2 Rapid Static Technique 43
3.4.3 Kinematic Technique 44
3.4.4 Stop and Go Technique 45
3.4.5 Real Time Kinematik (RTK) Technique 48
3.4.6 Real Time Kinematik (RTK) Network Technique 49
3.5 GPS Technique in Landslide Monitoring 52
3.6 The Usage of Monitoring Monument 53
3.7 Aspects of GPS in the Deformation Survey 53
3.7.1 Network Design 54
3.7.1.1 Precision Criteria 55
3.7.1.2 Reliability Criteria 56
3.7.1.3 Economy Criteria 57
3.7.2 Standards and Specifications of GPS for Deformation Survey 57
3.8 Concept and Procedures of Deformation Detection 58
3.8.1 Requirement for Deformation Detection 58
3.9 Geotechnical Techniques 60
3.9.1 Extensometer 60
3.9.2 Strainmeter 62
3.9.3 Pendulum 62
3.9.4 Tiltmeter 64
3.9.5 Inclinometer 64
3.10 Deformation Network Design 66
3.11 Network Adjustment 68
3.12 Geometrical Analysis 70
 3.12.1 Two Epoch Analysis 72
 3.12.2 Test on Variance Ratio 73
 3.12.3 Stability Determination by Congruency Test 74
3.13 Static Deformation Model 77

4 LANDSLIDE INVESTIGATION PROCEDURE AND TECHNIQUEOLOGY 80
4.1 Introduction 80
4.2 First Phase - Reconnaissance 80
 4.2.1 Site Selection 83
 4.2.1.1 Experimental Area: Section 5, Wangsa Maju, Kuala Lumpur 83
 4.2.1.2 Existing Sub-surface Investigation 87
 4.2.1.3 Field Test and Sampling Techniques 88
4.3 Second Phase - Field Investigation 93
 4.3.1 Survey Network Design 93
 4.3.2 Station Marking 96
 4.3.3 Surface Deformation Investigation 98
 4.3.3.1 GPS Receiver Testing 99
 4.3.3.2 GPS Data Observation 103
 4.3.3.3 GPS Data Processing 107
 4.3.3.4 GPS Baseline Processing 109
 4.3.4 Sub-surface deformation investigation 125
 4.3.4.1 Inclinometer Technique 126
 4.3.5 Rainfall 127
 4.3.5.1 The distribution of rainfall data 128

5 RESULTS AND ANALYSIS 131
5.1 Introduction 131
5.2 Geological Experiment 131
5.3 GPS Receiver Testing 139
5.4 Control Base Transfer Network 163
5.5 The Processed of Network Adjustment for the Monitoring Station 165
 5.5.1 The Processed Monitoring Station Using GPS Static Technique 165
 5.5.2 The Processed Monitoring Station Using Rapid Static Technique 173
 5.5.3 The Processed Monitoring Station Using Real Time Kinematic Technique 182
 5.5.4 The Processed Monitoring Station Using MyRTKnet Technique 185
5.6 GPS Monitoring Network Adjustment 188
 5.6.1 GPS Baseline Processing 188
 5.6.1.1 GPS Baseline Processing Using Static Technique 189
 5.6.1.2 GPS Baseline Processing Using Rapid Static Technique 205
 5.6.1.3 GPS Baseline Processing Using Real Time Kinematic Technique 219
 5.6.1.4 GPS Baseline Processing Using MyRTKnet Technique 224
 5.6.2 Adjusted Coordinates Direct Comparison Results 229
 5.6.3 Displacement Detection 245
 5.6.4 Sub-surface Monitoring Using Inclinometer Measurement 253
 5.6.4.1 Inclinometer Calibration 254
 5.6.4.2 Inclinometer Observation 263
 5.6.5 Comparison Between GPS and Inclinometer Measurement 286

6 CONCLUSION AND RECOMMANDATION 291
6.1 Introduction 291
6.2 Conclusions 291
6.3 Recommendations 296

BIBLIOGRAPHY 297

Appendices A – G 312–321
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relative level of destructives for slope movements of each velocity class (Source: Kehew, 2006)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>The causes of landslide (Source: Ramakrishnan et. al., 2002)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>The characteristic of landslide incident (Source: Nakamura, 1996)</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Surface displacement and their precision (Source: Gili, et. al., 2000)</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Major landslides in Malaysia (Source: Shazlin, 2010)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>ROM scale category (Source: NASEC Newsletter, 2002)</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison of ROM scale degree at various locations in Malaysia (Source: NASEC Newsletter, 2002)</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Geotechnical techniques and their geometrical observables</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Laboratory test</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>The suggest number of control point</td>
<td>94</td>
</tr>
<tr>
<td>4.3</td>
<td>Coordinate for the GPS control stations</td>
<td>95</td>
</tr>
<tr>
<td>4.4</td>
<td>The length of observation session</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Trimble 4800 Series Specifications</td>
<td>100</td>
</tr>
<tr>
<td>4.6</td>
<td>Topcon Hiper Ga dual frequency receiver</td>
<td>101</td>
</tr>
<tr>
<td>4.7</td>
<td>The observation session of GPS campaign</td>
<td>105</td>
</tr>
<tr>
<td>4.8</td>
<td>Trimble GPS data processing specification</td>
<td>108</td>
</tr>
<tr>
<td>4.9</td>
<td>Landslide risk for daily precipitation data</td>
<td>129</td>
</tr>
<tr>
<td>4.10</td>
<td>Landslide risk for continuous precipitation data in monsoon season</td>
<td>130</td>
</tr>
<tr>
<td>5.1</td>
<td>Results of the Atterberg limit test taken in May 2005</td>
<td>135</td>
</tr>
<tr>
<td>5.2</td>
<td>Results of the Atterberg limit test taken in May 2007</td>
<td>136</td>
</tr>
</tbody>
</table>
5.3 Results of the Atterberg limit test taken in May 2009
5.4 The plasticity index for the soil sample taken
in May 2005 to May 2009
5.5 Mackintosh probe log holes
5.6 Coordinate Value for the GNSS Calibration
Base at Seremban - Port Dickson Negeri Sembilan Highway
5.7 Coordinate Value for the GNSS Calibration Base
at Wangsa Maju, Wilayah Persekutuan Kuala Lumpur
5.8 The average coordinates for receiver R1
(GPS Calibration in April 2005)
5.9 The average coordinates for receiver R2
(GPS Calibration in April 2005)
5.10 The average coordinates for receiver R3
(GPS Calibration in April 2005)
5.11 The average coordinates for receiver R4
(GPS calibration in April 2005)
5.12 The average coordinates for receiver R1
(GPS calibration in April 2006)
5.13 The average coordinates for receiver R2
(GPS calibration in April 2006)
5.14 The average coordinates for receiver R3
(GPS calibration in April 2006)
5.15 The average coordinates for receiver R4
(GPS calibration in April 2006)
5.16 The average coordinates for receiver R1
(GPS calibration in April 2007)
5.17 The average coordinates for receiver R2
(GPS calibration in April 2007)
5.18 The average coordinates for receiver R3
(GPS calibration in April 2007)
5.19 The average coordinates for receiver R4
(GPS calibration in April 2007)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.20</td>
<td>The average coordinates for receiver R5 (GPS calibration in December 2008)</td>
</tr>
<tr>
<td>5.21</td>
<td>Adjusted Grid Coordinates for A01 and J01</td>
</tr>
<tr>
<td>5.22</td>
<td>The Adjusted RSO coordinates with G01 and M01 as reference station – Epoch 1</td>
</tr>
<tr>
<td>5.23</td>
<td>The Adjusted RSO coordinates with G01 and M01 as reference station – Epoch 2</td>
</tr>
<tr>
<td>5.24</td>
<td>The Adjusted RSO coordinates with G01 and M01 as reference station – Epoch 3</td>
</tr>
<tr>
<td>5.25</td>
<td>The Adjusted RSO coordinates with A01 and J01 as reference station – Epoch 1</td>
</tr>
<tr>
<td>5.26</td>
<td>The Adjusted RSO coordinates with A01 and J01 as reference station – Epoch 2</td>
</tr>
<tr>
<td>5.27</td>
<td>The Adjusted RSO coordinates with A01 and J01 as reference station – Epoch 3</td>
</tr>
<tr>
<td>5.28</td>
<td>The Adjusted RSO coordinates with G01, M01, A01 and J01 as reference station – Epoch 1</td>
</tr>
<tr>
<td>5.29</td>
<td>The Adjusted RSO coordinates with G01, M01, A01 and J01 as reference station – Epoch 2</td>
</tr>
<tr>
<td>5.30</td>
<td>The Adjusted RSO coordinates with G01, M01, A01 and J01 as reference station – Epoch 3</td>
</tr>
<tr>
<td>5.31</td>
<td>GPSAD2000 Processing Specifications</td>
</tr>
<tr>
<td>5.32</td>
<td>Single point test result between epoch 1 and epoch 2</td>
</tr>
<tr>
<td>5.33</td>
<td>Single point test result between epoch 1 and epoch 3</td>
</tr>
<tr>
<td>5.34</td>
<td>Single point test result between epoch 2 and epoch 3</td>
</tr>
<tr>
<td>5.35</td>
<td>Single point test result between epoch 1 and epoch 4</td>
</tr>
<tr>
<td>5.36</td>
<td>Single point test result between epoch 1 and epoch 5</td>
</tr>
<tr>
<td>5.37</td>
<td>Single point test result between epoch 4 and epoch 5</td>
</tr>
<tr>
<td>5.38</td>
<td>Single point test result between epoch 1 and epoch 6</td>
</tr>
<tr>
<td>5.39</td>
<td>Single point test result between epoch 1 and epoch 7</td>
</tr>
<tr>
<td>5.40</td>
<td>Single point test result between epoch 6 and epoch 7</td>
</tr>
<tr>
<td>5.41</td>
<td>Single point test result between epoch 1 and epoch 8</td>
</tr>
<tr>
<td>5.42</td>
<td>Single point test result between epoch 1 and epoch 9</td>
</tr>
<tr>
<td>5.43</td>
<td>Single point test result between epoch 8 and epoch 9</td>
</tr>
</tbody>
</table>
5.44 Yearly raining distribution for four observation stations (Period: 2000 to 2009) 283
5.45 The cumulative rainfall for the period of 2005 to 2009 285
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowchart of research methodology</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Classification of landslides by mechanism, material and velocity</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of Highland Landslide</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Velocity scale for slope movements</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>The slope profile either man made or natural</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Rockfall at Bukit Lanjan blocking the New Klang Valley Expressway in 2003</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>A huge landslide hit Taman Bukit Mewah, Bukit Antarabangsa Ampang in 2008</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Landslide block old road Kuala Lumpur to Rawang in 2009</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Landslide classifications in Malaysia</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>GPS System Configuration</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>GPS Satellites Constellation</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>GPS Control Segment</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Double Differences Observation</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Triple Differences Observation</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Flowchart of GPS Processing Phases</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>An Example of Static Surveying Technique</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Rapid Static Survey with Two Reference Receivers and One Roving Receiver</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>The kinematic GPS surveying technique</td>
<td>44</td>
</tr>
<tr>
<td>3.10</td>
<td>The antenna swap procedure for initialising ambiguities</td>
<td>46</td>
</tr>
<tr>
<td>3.11</td>
<td>Stop mode in stop and go technique</td>
<td>47</td>
</tr>
<tr>
<td>3.12</td>
<td>Go mode in stop and go technique</td>
<td>47</td>
</tr>
</tbody>
</table>
3.13 Set Up for RTK Survey
3.14 RTK-Network Set Up
3.15 The Concept of VRS Technique
3.16 Malaysian RTK-Network (MyRTKnet) Station Location
3.17 The Concept of Landslide Monitoring using GPS Technology
3.18 Procedure Deformation Detection by Technique of Congruency Test
3.19 An Extensometer Installation Across a Crack
3.20 A Strainmeter
3.21 Hanging and Suspended Pendulum
3.22 Hanging Pendulum
3.23 Borehole Tiltmeter
3.24 The Principle of Inclinometer
3.25 Point Displacement Ellipse
4.1 Flowchart of the Monitoring Procedure
4.2 Experimental area: Section 5, Wangsa Maju, Kuala Lumpur
4.3 Actual Experimental Area
4.4 Landslide Occurs on 26th April 2001
4.5 Water flowing into the Landslip was diverted using PVC Pipe
4.6 The Existing Slope View
4.7 Experimental Area
4.8 A stream at the experimental area
4.9 Mackintosh Probe
4.10 The Mackintosh probe is used at WM 28 station
4.11 The Mackintosh probe is used at WM 3 station
4.12 The collection of disturb soil sample at WM 3 station
4.13 The instruments for laboratory soil test
4.14 The sample is put on the tray
4.15 The tray is placed in the oven to dry the soil
4.16 The dry soil is sieved
4.17 The soil is weigh before test
4.18 The soil is mixed with water to make it wet
4.19 The test process is carried out using
the laboratory equipments
4.20 The soil is mixed with water
4.21 The soil is cut into a small pieces
4.22 The soil is placed in a small tray
4.23 The soil is placed on the weight
and the reading is recorded
4.24 The configuration of monitoring network
4.25 Control station M01
4.26 Control station G01
4.27 The monitoring monument design
4.28 The planting point process at selected point
4.29 The monument was plastered with concrete
and ready for observation
4.30 Trimble 4800 series dual frequency receiver
4.31 Topcon Hiper Ga dual frequency receiver
4.32 Photographs of the JUPEM’s pillar calibration
4.33 A series of GPS pillar calibration
4.34 The design of GPS pillar calibration
4.35 Satellite visibility and DOP values
4.36 GPS observation at station WM2 and WM9
4.37 GPS observation at WM5 station
4.38 Flowchart of the GPS data processing
and analysis procedure
4.39 Flowchart of GPS data processing
4.40 Interface of GPSAD 2000
4.41 Flowchart of deformation processing
using GPSAD2000 software
4.42 Menu of data input and deformation
detection processing
4.43 An example of the deformation detection output
4.44 An example of the graphic display for
displacement vector

4.45 A folder has been created by the users (e.g. Deform folder)

4.46 The 3 files locate in the Deform folder

4.47 Example of k01_coordinates.dat files

4.48 Example of k01_baselines.dat files

4.49 Example of k01_input.dat file

4.50 Window for the gps_free_adj.m in the Deform folder

4.51 Example of modify the input filename

4.52 The debug process in the Matlab software

4.53 Example of the network adjustment output

4.54 The 5 files locate in the Static_land2_free folder

4.55 Example of k01_Q_matrix.dat files

4.56 Example of k01_X_deng_koor.dat files

4.57 Example of k02_Q_matrix.dat files

4.58 Example of k02_X_deng_koor.dat files

4.59 Example of k01_k02_input.dat files

4.60 Example of k01_k02_input.dat files parameters

4.61 The main window of the Matlab software and
ps_sta_def_anlz.m in the Static_Deform folder

4.62 Example of modify the input filename

4.63 The debug process in the Matlab software

4.64 The Numerical Output File/Final Processing
Results, Exp: ko1_ko2_gps_sta_def_
summary_out.dat in the static_Deform Folder

4.65 Inclinometer set

4.66 Photograph of the inclinometer observation
at station Incl (WM3)

4.67 Photograph of the inclinometer observation
at station Incl5

4.68 The location of the rain observation station
in Kuala Lumpur

4.69 Daily precipitation data during monitoring session
5.1 Geological map of Kuala Lumpur
(Source: Chow, 1995)
132
5.2 The lithology of Wangsa Maju area with scale 1:25 000
(Source: Jabatan Penyiasatan Kajibumi, 1993)
132
5.3 BH 3 borehole
133
5.4 The plasticity chart
134
5.5 Plasticity chart for soil sample taken in May 2005
135
5.6 Plasticity chart for soil sample taken in May 2007
136
5.7 Plasticity chart for soil sample taken in May 2009
137
5.8 The standard deviation for receiver R1
(GPS calibration in April 2005)
141
5.9 The standard deviation for receiver R2
(GPS calibration in April 2005)
142
5.10 The standard deviation for receiver R3
(GPS calibration in April 2005)
143
5.11 The standard deviation for receiver R4
(GPS calibration in April 2005)
144
5.12 The standard deviation for receiver R1
(GPS calibration in April 2006)
145
5.13 The standard deviation for receiver R2
(GPS calibration in April 2006)
146
5.14 The standard deviation for receiver R3
(GPS calibration in April 2006)
147
5.15 The standard deviation for receiver R4
(GPS calibration in April 2006)
148
5.16 The standard deviation for receiver R1
(GPS calibration in April 2007)
149
5.17 The standard deviation for receiver R2
(GPS calibration in April 2007)
150
5.18 The standard deviation for receiver R3
(GPS calibration in April 2007)
151
5.19 The standard deviation for receiver R4
(GPS calibration in April 2007)
151
5.20 The standard deviation for receiver R5 (GPS calibration in April 2008) 153
5.21 The difference coordinates between JUPEM value and GPS measurement for receiver R1 (April 2005) 153
5.22 The difference coordinates between JUPEM value and GPS measurement for receiver R2 (April 2005) 154
5.23 The difference coordinates between JUPEM value and GPS measurement for receiver R3 (April 2005) 155
5.24 The difference coordinates between JUPEM value and GPS measurement for receiver R4 (April 2005) 155
5.25 The difference coordinates between JUPEM value and GPS measurement for receiver R1 (April 2006) 156
5.26 The difference coordinates between JUPEM value and GPS measurement for receiver R2 (April 2006) 157
5.27 The difference coordinates between JUPEM value and GPS measurement for receiver R3 (April 2006) 158
5.28 The difference coordinates between JUPEM value and GPS measurement for receiver R4 (April 2006) 159
5.29 The difference coordinates between JUPEM value and GPS measurement for receiver R1 (April 2007) 160
5.30 The difference coordinates between JUPEM value and GPS measurement for receiver R2 (April 2007) 161
5.31 The difference coordinates between JUPEM value and GPS measurement for receiver R3 (April 2007) 161
5.32 The difference coordinates between JUPEM value and GPS measurement for receiver R4 (April 2007) 162
5.33 The difference coordinates between JUPEM value and GPS measurement for receiver R5 (December 2008) 163
5.34 The processed latitude with G01 and M01 as reference station for epoch 1, epoch 2 and epoch 3 166
5.35 The processed longitude with G01 and M01 as reference station for epoch 1, epoch 2 and epoch 3 166
5.36 The processed vertical component with G01 and M01 as reference station for epoch 1, epoch 2 and epoch 3 167
5.37 The processed latitude with A01 and J01 as reference station for epoch 1, epoch 2 and epoch 3 168
5.38 The processed longitude with A01 and J01 as reference station for epoch 1, epoch 2 and epoch 3 169
5.39 The processed vertical component with A01 and J01 as reference station for epoch 1, epoch 2 and epoch 3 170
5.40 The processed latitude component with G01, M01, A01 and J01 as reference station for epoch 1, epoch 2 and epoch 3 171
5.41 The processed longitude component with G01, M01, A01 and J01 as reference station for epoch 1, epoch 2 and epoch 3 172
5.42 The processed vertical component with G01, M01, A01 and J01 as reference station for epoch 1, epoch 2 and epoch 3 173
5.43 The processed latitude component with G01 and M01 as reference station for epoch 4 and epoch 5 174
5.44 The processed longitude component with G01 and M01 as reference station for epoch 4 and epoch 5 175
5.45 The processed vertical component with G01 and M01 as reference station for epoch 4 and epoch 5 176
5.46 The processed latitude component with A01 and J01 as reference station for epoch 4 and epoch 5 177
5.47 The processed longitude component with A01 and J01 as reference station for epoch 4 and epoch 5
5.48 The processed vertical component with A01 and J01 as reference station for epoch 4 and epoch 5
5.49 The processed latitude component with G01,M01, A01 and J01 as reference station for epoch 4 and epoch 5
5.50 The processed longitude component with G01,M01, A01 and J01 as reference station for epoch 4 and epoch 5
5.51 The processed vertical component with G01,M01, A01 and J01 as reference station for epoch 4 and epoch 5
5.52 The processed latitude component for epoch 6 and epoch 7
5.53 The processed longitude component for epoch 6 and epoch 7
5.54 The processed vertical component for epoch 6 and epoch 7
5.55 The processed latitude component for epoch 8 and epoch 9
5.56 The processed longitude component for epoch 8 and epoch 9
5.57 The processed vertical component for epoch 8 and epoch 9
5.58 The GPS baseline result with G01 and M01 as the reference stations
5.59 The GPS baseline result with A01 and J01 as the reference stations
5.60 The GPS baseline result with G01,M01, A01 and J01 as reference stations
5.61 Residual plot for GPS baselines processing with reference stations G01 and M01
5.62 Redundancies graph for the GPS baselines with G01 and M01 as reference stations
5.63 External reliability for the GPS baselines with G01 and M01 as reference stations 194
5.64 Internal reliability of horizontal and vertical component for the GPS baselines with G01 and M01 as reference stations 195
5.65 Residual plot for GPS baselines processing with reference stations A01 and J01 196
5.66 Redundancies graph for the GPS baselines with A01 and J01 as reference stations 197
5.67 External reliability for the GPS baselines with A01 and J01 as reference stations 198
5.68 Internal reliability of horizontal and vertical component for the GPS baselines with A01 and J01 as reference stations 200
5.69 Residual plot for GPS baselines processing with reference stations G01, M01, A01 and J01 201
5.70 Redundancies graph for the GPS baselines with G01, M01, A01 and J01 as reference stations 202
5.71 External reliability for the GPS baselines with G01, M01, A01 and J01 as reference stations 203
5.72 Internal reliability of horizontal and vertical component for the GPS baselines with G01, M01, A01 and J01 as reference stations 205
5.73 The GPS baseline result with G01 and M01 as the reference stations 206
5.74 The GPS baseline result with A01 and J01 as the reference stations 207
5.75 The GPS baseline result with G01, M01, A01 and J01 as the reference stations 207
5.76 Residual plot for GPS baselines processing with reference stations G01 and M01 208
5.77 Redundancies graph for the GPS baselines with G01 and M01 as reference stations 209
5.78 External reliability for the GPS baselines with G01 and M01 as reference stations 210
5.79 Internal reliability of horizontal and vertical component for the GPS baselines with G01 and M01 as reference stations 211
5.80 Residual plot for GPS baselines processing with reference stations A01 and J01 212
5.81 Redundancies graph for the GPS baselines with A01 and J01 as reference stations 213
5.82 External reliability for the GPS baselines with A01 and J01 as reference stations 213
5.83 Internal reliability of horizontal and vertical component for the GPS baselines with A01 and J01 as reference stations 214
5.84 Residual plot for GPS baselines processing with reference stations G01, M01, A01 and J01 215
5.85 Redundancies graph for the GPS baselines with G01, M01, A01 and J01 as reference stations 216
5.86 External reliability for the GPS baselines with G01, M01, A01 and J01 as reference stations 217
5.87 Internal reliability of horizontal and vertical component for the GPS baselines with G01, M01, A01 and J01 as reference stations 218
5.88 The GPS baseline result with M01 as the reference stations 219
5.89 Residual plot for GPS baselines processing with reference stations M01 220
5.90 Redundancies graph for the GPS baselines with G01 and M01 as reference stations 221
5.91 External reliability for the GPS baselines 222
5.92 Internal reliability of horizontal and vertical component for GPS baselines 223
5.93 The GPS baselines result for epoch 8 and epoch 9 224
5.94 Residual plot for GPS baselines processing 225
5.95 Redundancies graph for the GPS baselines 226
5.96 External reliability for the GPS baselines 227
5.97 Internal reliability of horizontal and vertical component for the GPS Baselines 228
5.98 Coordinate differences of horizontal component 237
5.99 Coordinate differences of vertical component 239
5.100 Coordinate difference for horizontal component with G01 and M01 as references station for epoch 4 and 5 240
5.101 Coordinate difference for horizontal and vertical component with A01 and J01 as references station for epoch 4 and 5 241
5.102 Coordinate difference for horizontal and vertical component with G01, M01, A01 and J01 as references station for epoch 4 and 5 242
5.103 Coordinate difference for horizontal and vertical component for epoch 6 and 7 243
5.104 Coordinate difference for horizontal and vertical component for epoch 8 and 9 244
5.105 The inclinometer calibration for epoch 1 at Incl1 255
5.106 The inclinometer calibration for epoch 1 at Incl2 255
5.107 The inclinometer calibration for epoch 1 at Incl3 256
5.108 The inclinometer calibration for epoch 1 at Incl4 256
5.109 The inclinometer calibration for epoch 1 at Incl5 257
5.110 The inclinometer calibration for epoch 5 at Incl1 258
5.111 The inclinometer calibration for epoch 5 at Incl2 258
5.112 The inclinometer calibration for epoch 5 at Incl3 259
5.113 The inclinometer calibration for epoch 5 at Incl4 259
5.114 The inclinometer calibration for epoch 5 at Incl5 260
5.115 The inclinometer calibration for epoch 9 at Incl1 261
5.116 The inclinometer calibration for epoch 9 at Incl2 261
5.117 The inclinometer calibration for epoch 9 at Incl3 262
5.118 The inclinometer calibration for epoch 9 at Incl4 262
5.119 The inclinometer calibration for epoch 9 at Incl5 263
5.120 The inclinometer reading for epoch 1, epoch 2 and epoch 3 campaigns at Incl1 (WM3) 264
5.121 The inclinometer reading for epoch 1, epoch 4 and epoch 5 campaigns at Incl1(WM3) 265
5.122 The inclinometer reading for epoch 1, epoch 6 and epoch 7 campaigns at Incl1(WM3) 265
5.123 The inclinometer reading for epoch 1, epoch 8 and epoch 9 campaigns at Incl1(WM3) 267
5.124 The inclinometer reading for all epoch at Incl1 (WM3) 267
5.125 The inclinometer reading for epoch 1, epoch 2 and epoch 3 campaigns at Incl2 268
5.126 The inclinometer reading for epoch 1, epoch 4 and epoch 5 campaigns at Incl2 269
5.127 The inclinometer reading for epoch 1, epoch 6 and epoch 7 campaigns at Incl2 270
5.128 The inclinometer reading for epoch 1, epoch 8 and epoch 9 campaigns at Incl2 271
5.129 The inclinometer reading for all epoch at Incl2 272
5.130 The inclinometer reading for epoch 1, epoch 2 and epoch 3 campaigns at Incl3 (WM21) 273
5.131 The inclinometer reading for epoch 1, epoch 4 and epoch 5 campaigns at Incl3 (WM21) 273
5.132 The inclinometer reading for epoch 1, epoch 6 and epoch 7 campaigns at Incl3 (WM21) 274
5.133 The inclinometer reading for epoch 1, epoch 8 and epoch 9 campaigns at Incl3 (WM21) 275
5.134 The inclinometer reading for all epoch at Incl3 (WM21) 276
5.135 The inclinometer reading for epoch 1, epoch 2 and epoch 3 campaigns at Incl4 (WM23) 277
5.136 The inclinometer reading for epoch 1, epoch 4 and epoch 5 campaigns at Incl4 (WM23) 277
5.137 The inclinometer reading for epoch 1, epoch 6 and epoch 7 campaigns at Incl4 (WM23) 278
5.138 The inclinometer reading for epoch 1, epoch 8 and epoch 9 campaigns at Incl4 (WM23)
5.139 The inclinometer reading for all epoch at Incl4 (WM23)
5.140 The inclinometer reading for epoch 1, epoch 2 and epoch 3 campaigns at Incl5
5.141 The inclinometer reading for epoch 1, epoch 4 and epoch 5 campaigns at Incl5
5.142 The inclinometer reading for epoch 1, epoch 6 and epoch 7 campaigns at Incl5
5.143 The inclinometer reading for epoch 1, epoch 8 and epoch 9 campaigns at Incl5
5.144 The inclinometer reading for all epoch at Incl5
5.145 Yearly raining distribution for four observation stations from 2000 to 2010
5.146 The monthly raining distribution at Bukit Antarabangsa observation station
5.147 The cumulative rainfall for the period of 2005 to 2009
5.148 Inclinometer reading and GPS results versus time at Incl1 (WM3)
5.149 Inclinometer reading and GPS results versus time at Incl2
5.150 Inclinometer reading and GPS results versus time at Incl3 (WM21)
5.151 Inclinometer reading and GPS results versus time at Incl4 (WM23)
5.152 Inclinometer reading and GPS results versus time at Incl5
5.153 The stream at the study area
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTK</td>
<td>Real Time Kinematic</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>DOP</td>
<td>Dulation of Precision</td>
</tr>
<tr>
<td>VRS</td>
<td>Virtual Reference Station</td>
</tr>
<tr>
<td>GPSAD2000</td>
<td>GPS Adjustment and Deformation Detection 2000</td>
</tr>
<tr>
<td>RTCM</td>
<td>Radio Technical Commission for Maritime Services</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communication</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Services</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>DGPS</td>
<td>Differential Global Positioning System</td>
</tr>
<tr>
<td>EDM</td>
<td>Electronic Distance Measurements</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>ppm</td>
<td>Part per million</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The design matrix</td>
</tr>
<tr>
<td>b</td>
<td>The misclosure vector</td>
</tr>
<tr>
<td>C_x</td>
<td>Covariance matrix</td>
</tr>
<tr>
<td>Q_d</td>
<td>Cofactor matrix</td>
</tr>
<tr>
<td>I</td>
<td>Identity matrix</td>
</tr>
<tr>
<td>l</td>
<td>The vector of observations</td>
</tr>
<tr>
<td>l_o</td>
<td>Vector of computed observation</td>
</tr>
<tr>
<td>n</td>
<td>Number of observations</td>
</tr>
<tr>
<td>u</td>
<td>Number of parameter</td>
</tr>
<tr>
<td>W</td>
<td>The weight matrix</td>
</tr>
<tr>
<td>\hat{x}</td>
<td>The vector of unknown parameters</td>
</tr>
<tr>
<td>\hat{x}_1, \hat{x}_2</td>
<td>The vector of corrections to the approximate values</td>
</tr>
<tr>
<td>\hat{v}</td>
<td>The vector of residuals</td>
</tr>
<tr>
<td>\hat{x}</td>
<td>The vector of corrections</td>
</tr>
<tr>
<td>σ_o^2</td>
<td>A priori variance factor</td>
</tr>
<tr>
<td>\hat{d}</td>
<td>Displacement vector</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The Standards and Specifications of GPS Deformation Survey</td>
<td>312</td>
</tr>
<tr>
<td>B</td>
<td>The Information of BH 3 Borehole</td>
<td>315</td>
</tr>
<tr>
<td>C</td>
<td>The Information of BH 4 Borehole</td>
<td>316</td>
</tr>
<tr>
<td>D</td>
<td>The Information of BH 6 Borehole</td>
<td>317</td>
</tr>
<tr>
<td>E</td>
<td>The Laboratory test</td>
<td>318</td>
</tr>
<tr>
<td>F</td>
<td>The Mackintosh result</td>
<td>319</td>
</tr>
<tr>
<td>G</td>
<td>The difference coordinates between JUPEM value and GPS measurement for receiver R1 (GPS calibration in April 2005)</td>
<td>320</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Landslide is considered as one of the worst natural phenomenon that threaten human life and property all over the world, including Malaysia. As one of the developing country, Malaysia has grown with rapid economic development over the last decades. These have necessitated the cutting of many hill slopes in order to maximize land utilization Hui (1999). Thus, the development of highlands area such as housing, highway and golf course construction and intensive forest logging have resulted in frequent occurrences of landslides. Therefore, an efficient and effective monitoring technique should be established in order to detect the rate of movement, size and the direction of the landslide. Assessment of real landslide occurrences includes the efforts to monitor land movement continuously. Brennan (1999) had categorized landslide research into three important phases:

a. Defining and classification of landslide,

b. Monitoring activities for landslide, and

c. Analysis and movement trend (deformation modelling).

This study focuses on the effective methods of GPS observation and data processing techniques, the trend analysis between GPS and inclinometer technique to detect deformation of slope and to produce suitable monitoring procedure using GPS and inclinometer application. This chapter briefly introduces the background of the research followed by problem statements, objectives and the statement of scopes of the research.
Landslide in non-horizontal position will encourage several gravitational force components to act upon them and force the land to slide when other external factors such as water, trigger the displacement. The land movement will occur when the inner layer or the outer layer of the earth is exposed to natural slipping motion. The earth will develop an unstable area outlined by a weak line named slip plane. Tubbs (1975) appointed that if there is any disruption along the slip plane area that would endanger the stability of the earth, and then a landslide will occur.

Landslide brings destructiveness and prominent geo-hazard that continuously affecting many tropical countries, especially in the monsoon season. For the past 25 years, rainfall has induces many landslides throughout Malaysia that strikes the citizens, especially near the hillside areas where several properties are damaged, human death and injuries have been reported. For example, landslide tragedy that occurred at Genting Highland on 30 June 1995 had killed 20 lives and more than 20 persons injured. Similarly, the landslide incident occurred in North-South near Gua Tempurung had caused extremely big loss and the cost of repair amount to ten million Ringgit Malaysia (Utusan Malaysia, 2002a). The landslide incident at Kampung Pasir, Hulu Klang in 31 Mei 2006 had killed four persons and caused a lot of property damage (Bernama, 2008). According to Marzita (2000), there are more than 100 areas in Peninsular Malaysia and 149 areas along the North South Highway that has been identified as the potential area of landslide.

Generally, there are various types of investigation and instrumentation being used to monitor landslide phenomena. The main investigations are geological structure, surface deformation, ground water and geotechnical. According to Nakamura (1996), the landslide boundaries, size and the movement directions can be determined by the surface deformation investigation using various type of measurement which include extensometer, tilmeter, field-based geodetic method such as precise levelling, close range photogrammetry, aerial photographs, and by satellite-based method such as Global Positioning System. Geological survey relies on probing, geophysical analysis and the evaluation of slide plane using the geotechnical instruments depending on the accuracy and magnitude requirements. Investigation of ground water includes ground water tracing test, ground water level, pore water

Usually, the easy way to define landslide evolution and analyses of any kinematics movement is to carry out survey works on the land surface. In many cases, survey work must be carried out more effectively especially from the aspect of time and cost. Research on landslide phenomena need continuously effort especially the deformation monitoring on existing landslide location from many aspect. This will help to decrease risk of landslide tragedies. Landslide phenomena are always correlated with the changes of the slope land or the failure of slope land.

Nowadays, Global Positioning System (GPS) has become a useful tool for the positioning of object. Robustness of GPS equipments, its reliability and its ease-of-use are some of the factors why GPS system is popular in survey works. With emerging of new GPS technology, many positioning methods and sophisticated software have been developed to collect field data efficiently whether for real-time purposes or post-processing purposes. Thus, GPS technology has became more progressive and has been applied in survey jobs, engineering surveys and other mapping purposes. GPS is beneficial in enabling deformation monitoring.

According to Forward (2002), GPS has several advantages over the other types of technology:

i. GPS operates 24-hour in any weather conditions.
ii. GPS works without direct visibility between two points with the minimal user interaction.
iii. GPS observation allows large number of acquisition with high speed and resolution.
iv. GPS can monitor large areas with three-dimensional (3D) positioning information.

In landslide research, GPS technology can be a tool to provide 3D coordinates for monitoring point. In this type of research, establishment of stable monitoring monuments are vital to ensure the success of such research. The monuments played an important role in such research that involved landslide. In order to explain the
deformation and to obtain more satisfied results, it is better to combine the geotechnical with GPS methods in landslide monitoring Kalkan et al., (2002), Yalçınkaya and Bayrak (2002a and 2002b).

1.2 Problem Statement

Recently, landslide phenomenon has become a serious problem in Malaysia. This phenomenon occurred due to uncontrolled development especially at hilly terrain such as Penang, Kuala Lumpur, etc. The landslide tragedies have killed many people and also destroy the facilities such as buildings, roads, recreational park, houses, bridges and others. This phenomenon also causes a major socio economic impact on people and their whole live. All these tragedies were triggered by heavy rain. Therefore, real time rainfall values are valuable indicator of the risk level of landslides at the hilly terrain. As a result, preventing and reducing landslide effects can be solved by monitoring and solving the landslides mechanism Kalkan et al., (2002).

In the past, there are various types of instruments and methods that have been used to monitor landslide phenomena such as geological methods, geodetic methods, and geotechnical methods. All the investigations are carried out before and after any landslide tragedy. However, in Malaysia, the investigation is only carried out immediately after the incident occurred by the government sectors such as the Mineralogy and Geological Survey Department of Malaysia (JMG), Department of Public Worker (JKR) and other private sectors such as Malaysian Public Worker Institutes (IKRAM). Although the zonation of landslide is already known where is the prone area, but when it happen is unknown? They mostly used the geological method and geotechnical methods using the inclinometer techniques on the landslide area where sometime it is hard to assessable to the prone are. This will take longer time to identify the rate of landslide movement. In many cases, measurements must be efficient in terms of time and budget. Hence, to overcome this problem, this study investigates an appropriate procedure on the effectiveness of GPS observation and processing for landslide monitoring. The GPS technology is selected because of it is
one of the latest surveying technologies that has been proven very reliable to monitor landslide phenomenon. GPS methods provide satisfying results of the landslide behaviour, however, it provides limited information on the surface movement (Chrzanowski, 1986).

The GPS technique is capable of providing 3D coordinates in single or multi-epoch observation and can be used to determine displacement through the recognized displacement coordinate relationship. This study also investigates the techniques to quantify the 3D GPS coordinates into deformation magnitude and direction. Besides that, these studies also investigate whether the achievable value is a significant deformation or vice-versa.

Generally, the geotechnical method such as inclinometer technique gives limited information of the sub-surface of deformable body, which are capable of providing measurement in one-dimension (Hill and Sippel, 2002). Additionally, geotechnical instruments are expensive or very costly and could only use limited number and location. Normally, geotechnical instrument could not be installed at the most critical site and the installation required significant effort. In order to have a better and more detail information on the characteristics of landslide, GPS survey method should be whenever possible to complemented with geotechnical method such as inclinometer technique (Kalkan et al., 2002). The combination of these techniques can define the mechanisms and the processes of landslide as well as the relationship between the physical soil and the slope stability. Based on these techniques, appropriate procedure for landslide monitoring is produced in this study.

1.3 **Aim and Objective of Study**

The main aim of the study is to determine the effectiveness of GPS and inclinometer techniques to monitor landslide deformation. Therefore, the following objectives are presented to achieve the aim: -

a. To utilize GPS and geotechnical techniques in landslide monitoring.
b. To determine the magnitude of horizontal and vertical displacement of the study area periodically by using GPS and geotechnical methods.

c. To evaluate the effectiveness of GPS technique in monitoring positioning station for purpose of landslide deformation. The procedure focuses on the use of few GPS technique such as static, fast static, real time kinematic and real time kinematic network (MyRTKnet).

d. To investigate an appropriate procedure on the effectiveness of GPS and inclinometer observation and make comparative analysis between GPS and inclinometer for landslide displacement trend.

1.4 Scope of Study

Landslide studies require high precision measurements and proper structural deformation networking and analysis technique due to its slow moving nature. The geotechnical data and the satellite data system through the GPS technologies are capable of giving deformation conditions of the slope for safety purposes. The method of GPS employed for this study is the static, fast static, real time kinematic and real time kinematic network positioning mode, while for the geotechnical techniques, the data were taken using the Mackintosh Probe method, laboratory test and inclinometer investigation technique. These two methods are reliable, accurate and efficient for landslide monitoring deformation.

1.5 Research Methodology

Landslide researches need continuous monitoring efforts in order to keep track of the land movement evolutions in certain landslide locations. This session discusses in brief the experimental research for landslide monitoring. There are three phases in this research methodology as shown in Figure 1.1. The first phase includes the reconnaissance stage which includes the preliminary investigation such as site
reconnaissance, topographic investigation and preliminary analysis of existing geotechnical data such as boring result. The methodology starts by carried Literature review on GPS technology and geotechnical and their applications in landslide monitoring. This followed by choosing the suitable landslide location which is relevant to the research scopes. Next, soil probing using Macintosh probe techniques and soil sampling test in laboratory work was carried out at the landslide area.

Second phase is field investigation which includes set up monitoring networks design with respect to the specified monitoring technique. Than followed by the determination of control stations and plant monitoring stations location on the study area. Next is the field measurements that involve the GPS technique such as static, fast static, real time kinematic and real time kinematic network positioning mode and inclinometer techniques at the control and monitoring stations within certain epochs (after completing the monuments at the test sites).

Third phase is landslide assessment that includes the strategies of data processing and deformation analysis. The processing and analysis of GPS data is done to detect any deformation between first epoch and rest of the epochs using deformation software such as GPSAD2000 and Static Deformation Program. While, for the inclinometer data are processed and analysed using In-Site software. This followed by the detection of deformation based on geotechnical data using inclinometer instrument. Finally, the rate of displacement from both GPS and inclinometer techniques are compared and analysed.

1.6 Significant of Study

The contribution of this study is summarized as follows. Firstly, the precise GPS survey techniques are utilized to provide sub-centimetres precision for the slope stability analysis. Secondly, the suitability and effectiveness GPS techniques are utilized in deformation detection for landslide monitoring in Malaysia. The method of deformation applied in this study provides a perspective to the relevant authority or department to apply the approach for landslide monitoring.
Preliminary Investigation

Collecting existing data, data review, rainfall, soil types

Desk Study and Reconnaissance (Soil probing and sampling)

Drafting a detailed investigation plan

Network design and monumentation

Data Collection

Geotechnical Method

Inclinometer (9 epoch observation)

Software: Inclinometer Trend of movement

Phase 1: Reconnaissance

Phase 2: Field Investigation

Satellite Tracking Data

Global Positioning System (9 epoch observation)

Instrument Calibration

Data processing and adjustment

Software:
Trimble Geomatic Office (latitude, longitude, height), Topcon Tool Office – Geographical Coordinates
Starnet – GPS network adjustment

Phase 3: Landslide Evaluation

Deformation Software:
GPSAD2000 – Congruency Test Method
Static Deformation Program

Result and Analysis

Figure 1.1: Flowchart of research methodology
The GPS and inclinometer techniques implemented in this study will provide better information of position changes in horizontal and vertical. The processing strategy of the technique should be obtained for true deformation without error or bias. This study customizes data processing algorithm for deformation which can provides a precise result. The benefit of this approach is that it verifies the reliability of the GPS technique for precise application such as landslide deformation monitoring.

The other contribution is to apply GPS and inclinometer techniques result for deformation monitoring in order to give an early result of the area that prone to landslide phenomenon. This could give benefit to the people at the surrounding area for an early prevention step and to reduce the damage caused by landslide.

1.7 Organisation of Thesis

This thesis consists of six chapters, appendices and a list of references. Chapter 1 explains the related introduction of this study including background of study, objectives, scopes and contribution of the study.

Chapter 2 discusses the issues of landslide phenomenon in detail, including the definition of landslide phenomenon in various perceptions, existing characteristics of landslide, and its connection with slope failure, landslide occurrence factors, the investigation methods and the examples of landslide phenomenon and the investigation methods in Malaysia.

Chapter 3 explains in depth the details of the scientific methods in landslide monitoring such as the instrumentation that being used in this study which are GPS and inclinometer. A detail explanation of both techniques is discussed. This include a discussion reviewing the GPS segment; the error sources involved in using GPS; positioning method and mechanism; processing differenced data; baseline solution; GPS dilution and GPS processing packages. Summaries of basic concept and techniques of inclinometer measurement are also presented in this chapter. The basic
concepts and methods of deformation analysis, types of network monitoring and techniques used for deformation monitoring are also discussed in this chapter.

Chapter 4 focuses on the observation procedure and research methodology. The observation procedure consists of network configuration, control network, monument design, types of GPS observation, and number of inclinometer casing based on the landslide rank from the ROM scale that has been developed Marzita (2000). This chapter also explained the operational scheme of combining the GPS and geotechnical methods for the landslide investigation. The implementation and application of the operational procedures using both GPS and geotechnical method at one existing landslide area that has been chooses as a sample. The detail explanation of the network design, monitoring campaign, processing and others related processes are discussed in this chapter. In the first sub-chapter, the preliminary study of the types of soil and laboratory test is highlighted in this chapter. The next section covers the network design and designation of the monitoring points. This chapter also briefly presents the observation procedures and analyses of processing GPS data for deformation monitoring landslide phenomenon using few GPS processing packages such as Trimble Geometry Operations (TGO), Topcon Tools and STARNET software.

Chapter 5 explains the results and discusses the work accomplished. The analysis consists of GPS network adjustment, GPS network deformation analysis, processing strategy using GPSAD2000 and Static Deformation Software, and the inclinometer detection.

Finally, Chapter 6 draws an overall conclusion and some important recommendation to future investigation of landslide monitoring in Malaysia. These conclusions and recommendations address the objectives stated in Chapter 1.
BIBLIOGRAPHY

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/Mode

http://www.gisdevelopment.net/application/natural_hazards/landslides/nhls0012pf.htm

Superior Products Distributions, (2011). Topcon Hiper Lite. Available at:

