PRODUCTION OF BIOSURFACTANT BY LOCALLY ISOLATED BACTERIA FROM PETROCHEMICAL WASTE

RUZNIZA BINTI MOHD ZAWAWI

UNIVERSITI TEKNOLOGI MALAYSIA
PRODUCTION OF BIOSURFACTANT BY LOCALLY ISOLATED BACTERIA
FROM PETROCHEMICAL WASTE

RUZNIZA BINTI MOHD ZAWAWI

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Master of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

DECEMBER 2005
ABSTRACT

Ten bacterial strains previously isolated from petrochemical wastes were selected for the screening of biosurfactant producer(s), via four different methods; (i) surface tension measurements, (ii) blood hemolysis test, (iii) drop-collapsing test, and (iv) bacterial adherence to hydrocarbon (BATH) test. Two isolates coded AB-Cr1 and ETL-Cr1 identified as Actinobacillus sp. and Aeromonas sp., respectively were chosen to be the best candidates for biosurfactant production. Biosurfactant productions by both isolates were found to be growth-associated in all conditions tested. Biosurfactant production in glucose/crude oil medium (7.18-8.26 g/L) was found similar to that observed in crude oil-free medium (6.33-8.76 g/L). The production of biosurfactant was also studied in a fermentor using isolate AB-Cr1, as a factor of temperature, initial glucose concentration, pH and initial nitrogen concentration. The highest production of 12.45 g/L was obtained with AB-Cr1 grown in medium (pH 7) supplemented with 25mM NH$_4$NO$_3$ as nitrogen source and 3mM glucose as carbon source, incubated at 37°C under non-pH controlled strategy. TLC and FTIR characterization of crude biosurfactant produced by both isolates in medium supplemented or not with crude oil indicated the presence of lipoprotein and non-aromatic glycolipid types of biosurfactant. GC-MS analysis of fatty acid methyl esters indicated the presence of pentadecanoic acid in crude biosurfactant from both isolates as well as octadecanoic and heptadecanoic acid in the biosurfactant produced by AB-Cr1 and ETL-Cr1, respectively. The CMC of the biosurfactant produced in the presence and absence of crude oil were approximately (g/L) 1.0 and 0.1 for AB-Cr1, and 1.2 and 0.2 for ETL-Cr1, respectively. The biosurfactants were found capable of producing a relatively stable emulsion with hydrocarbon at pH 10. It was also found stable at various pHs (3.0-13.0 and 5.0-9.0) for AB-Cr1 and ETL-Cr1, respectively and thermostable for 1 hour at 100°C, based on the value of surface tension.
ABSTRAK

Sepuluh strain bakteria yang telah dipencikan dari sisa petrokimia telah dipilih untuk penyaringan bakteria penghasil-biosurfaktan, melalui empat kaedah; (i) pengukuran ketegangan permukaan, (ii) ujian hemolisis darah, (iii) ujian keruntuhan titisan, dan (iv) ujian pelekatan bakteria kepada hidrokarbon. Dua strain, AB-Cr1 dan ETL-Cr1 dikenalpasti masing-masing sebagai Actinobacillus sp. dan Aeromonas sp., telah dipilih sebagai bakteria yang paling berpotensi menghasilkan biosurfaktan. Penghasilan biosurfaktan oleh kedua-dua strain didapati bergantung kepada pertumbuhan sel dalam semua keadaan ujian. Penghasilan biosurfaktan di dalam medium glukosa/minyak mentah (7.18-8.26 g/L) didapati serupa dengan medium tanpa minyak mentah (6.33-8.76 g/L). Penghasilan biosurfaktan oleh strain AB-Cr1 juga telah dijalankan di dalam fermenter terhadap faktor suhu, kepekatan awal glukosa, pH dan kepekatan awal nitrogen. Penghasilan maksimum sebanyak 12.45 g/L didapati oleh AB-Cr1 di dalam media (pH 7) yang mengandungi 25mM NH₄NO₃ sebagai sumber nitrogen dan 3mM glukosa sebagai sumber karbon, pada suhu 37ºC tanpa kawalan pH. Pencirian biosurfaktan mentah bagi kedua-dua strain melalui kaedah TLC dan FTIR menunjukkan kehadiran biosurfaktan jenis lipoprotein dan glikolipid bukan aromatic. Analisis GC-MS terhadap metil ester asid lemak menunjukkan kehadiran asid pentadekanoik dan heptadekanoik dalam ekstrak biosurfaktan mentah bagi kedua-dua strain dan juga asid oktadekanoik dan heptadekanoik dalam biosurfaktan yang masing-masing dihasilkan oleh AB-Cr1 dan ETL-Cr1. Nilai CMC bagi biosurfaktan yang dihasilkan dengan dan tanpa minyak mentah adalah masing-masing (g/L) 1.0 dan 0.1 bagi AB-Cr1, dan 1.2 dan 0.2 bagi ETL-Cr1. Biosurfaktan ini berupaya menghasilkan emulsi yang stabil terhadap hidrokarbon pada pH10. Ia juga didapati stabil pada pelbagai pH (3.0-13.0 dan 5.0-9.0) bagi AB-Cr1 and ETL-Cr1, masing-masing dan stabil terhadap haba selama 1 jam pada 100ºC, berdasarkan nilai ketegangan permukaan.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUPERVISOR’S APPROVAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>THESIS TITLE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General Overview: Surfactant and Biosurfactant | 1
1.2 Scope and Objectives of the Current Project | 4

2 LITERATURE REVIEW

2.1 Introduction to Biosurfactant | 6
2.1.1 Definition and Classification | 6
2.1.2 Structure and Properties of Biosurfactant
 2.1.2.1 Glycolipids
 2.1.2.2 Lipoproteins and Lipopeptides
 2.1.2.3 Fatty acids, Phospholipids and Neutral Lipids
 2.1.2.4 Polymeric Biosurfactants
 2.1.2.5 Particulate Biosurfactants

2.2 Screening of Biosurfactant-producing Bacteria
 2.2.1 Cell Hydrophobicity Test
 2.2.2 Drop-collapsing Technique
 2.2.3 Hemolytic Activity
 2.2.4 Surface Tension Reduction

2.3 Biosynthesis of Biosurfactant
 2.3.1 General Features of Biosynthesis
 2.3.2 Biosynthetic Pathway of Biosurfactant Synthesis
 2.3.3 Regulation of Biosurfactant Synthesis

2.4 Production of Biosurfactant
 2.4.1 Factors Affecting Biosurfactant Production
 2.4.1.1 Effect of Carbon Source
 2.4.1.2 Effect of Nitrogen Source
 2.4.1.3 Effect of Environmental Factors
 2.4.2 Kinetics of Biosurfactant
 2.4.2.1 Growth-associated Biosurfactant Production
 2.4.2.2 Biosurfactant Production Under Growth-limiting Conditions
 2.4.2.3 Biosurfactant Production by Resting or Immobilized Cells
 2.4.2.4 Biosurfactant Production in Addition to Precursors

2.5 Extraction of Biosurfactant
2.6 Applications and Roles of Biosurfactant
2.7 Characteristics of Chemical Surfactant and Biosurfactant
 2.7.1 Advantages and Disadvantages of Biosurfactants in Commercial Application
3 GENERAL MATERIALS AND METHODS

3.1 Microorganisms

3.1.1 Bacterial Isolates: Origin and Route of Isolation

3.1.2 Crude Oil

3.2 Media Preparation

3.2.1 Liquid Medium

3.2.1.1 Ramsay Liquid Medium

3.2.2 Solid Media

3.2.2.1 Nutrient Agar

3.2.2.2 Ramsay Agar

3.2.2.3 Blood Agar

3.3 Growth and Maintenance of Bacterial Isolates

3.3.1 Inoculum Preparation

3.3.2 Culture Maintenance and Storage

3.4 Analytical Methods

3.4.1 Determination of Bacterial Biomass

3.4.1.1 Optical Density

3.4.1.2 Cell Dry Weight

3.4.2 Determination of Glucose Concentrations

3.4.3 Surface Activity Measurements

3.4.3.1 Surface Tension Measurement

3.4.3.2 Interfacial Tension Measurement

3.4.3.3 Spreading Tension Measurement

3.5 Production of Biosurfactant

3.5.1 Biosurfactant Extraction

3.5.2 Determination of Biosurfactant Dry Weight

4 SCREENING AND CHARACTERIZATION OF BIOSURFACTANT-PRODUCING BACTERIA

4.1 Introduction

4.2 Methodology

4.2.1 Screening of Biosurfactant-producing Bacteria
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.1</td>
<td>Bacterial Adherence To Hydrocarbon (BATH) Test</td>
<td>45</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Drop-collapsing Test</td>
<td>45</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Blood Hemolysis Test</td>
<td>46</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Surface Tension Measurement</td>
<td>46</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Characterization of Biosurfactant-producing Isolates</td>
<td>47</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Morphological Analysis</td>
<td>47</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Biochemical Analysis</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Results and Discussion</td>
<td>48</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Screening of Biosurfactant-producing Bacteria</td>
<td>48</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Bacterial Adherence To Hydrocarbon (BATH) Test</td>
<td>48</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Drop-collapsing Test</td>
<td>50</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Blood Hemolysis Test</td>
<td>52</td>
</tr>
<tr>
<td>4.3.1.4</td>
<td>Surface Tension Measurement</td>
<td>54</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Characterization of the Selected Biosurfactant-producing Isolates</td>
<td>55</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Colony and Cellular Morphological Characterizations</td>
<td>55</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Biochemical Characterization</td>
<td>57</td>
</tr>
</tbody>
</table>

5 PRODUCTION OF BIOSURFACTANT BY PURE AND MIX BACTERIAL CULTURES IN SHAKE FLASKS

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>58</td>
</tr>
<tr>
<td>5.2</td>
<td>Methodology</td>
<td>59</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Optimization of Growth</td>
<td>59</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Effect of Initial Glucose Concentrations on Growth</td>
<td>59</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Effect of Initial pH on Growth</td>
<td>59</td>
</tr>
<tr>
<td>5.2.1.3</td>
<td>Effect of Temperature on Growth</td>
<td>60</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Biosurfactant Production under the Optimized Growth Condition</td>
<td>60</td>
</tr>
</tbody>
</table>
5.2.3 Effect of Glucose and Crude Oil on Biosurfactant Production

5.2.4 Production of Biosurfactant by Bacterial Mix Cultures

5.3 Results and Discussion

5.3.1 Optimization of Growth

5.3.1.1 Effect of Initial Glucose Concentrations on Growth

5.3.1.2 Effect of Initial pH on Growth

5.3.1.3 Effect of Temperature on Growth

5.3.2 Biosurfactant Production under the Optimized Growth Condition

5.3.3 Production of Biosurfactant in Crude Oil-containing Medium

5.3.4 Production of Biosurfactant by Bacterial Mix Cultures

6 PRODUCTION OF BIOSURFACTANT BY STRAIN AB-Cr1 IN BIOREACTOR

6.1 Introduction

6.2 Methodology

6.2.1 Batch Fermentation

6.2.1.1 Effect of Temperature on Biosurfactant Production

6.2.1.2 Effect of Initial Glucose Concentrations on Biosurfactant Production

6.2.1.3 Effect of Controlled pH Condition on Biosurfactant Production

6.2.1.4 Effect of Initial NH₄NO₃ Concentrations on Biosurfactant Production

6.3 Results and Discussion

6.3.1 Effect of Temperature on Biosurfactant Production

6.3.2 Effect of Initial Glucose Concentrations on
Biosurfactant Production

6.3.3 Effect of Controlled pH Condition on Biosurfactant Production

6.3.4 Effect of Initial NH$_4$NO$_3$ Concentrations on Biosurfactant Production

7 CHARACTERIZATION OF CRUDE BIOSURFACTANT

7.1 Introduction 108

7.2 Methodology 109

7.2.1 Emulsification Activity Tests 109

7.2.1.1 Assay of Emulsification 109

7.2.1.2 Assay of Emulsion Stability 109

7.2.2 Critical Micelle Concentration (CMC) Determination 109

7.2.3 Stability Studies 110

7.2.4 Thin Layer Chromatography (TLC) 110

7.2.5 Fourier Transform Infrared (FTIR) 111

7.2.6 Fatty Acid Analysis 111

7.3 Results and Discussion 112

7.3.1 Emulsification Activities 112

7.3.2 Critical Micelle Concentration (CMC) 114

7.3.3 Stability Studies 116

7.3.4 Thin Layer Chromatography (TLC) 118

7.3.5 Fourier Transform Infrared (FTIR) 120

7.3.6 Fatty Acid Analysis 124

8 GENERAL DISCUSSION AND CONCLUSION

8.1 Conclusion 128

8.2 Suggestion 131

REFERENCES 133
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mN/m</td>
<td>Milinewton per meter</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per litre</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitre</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>CMC</td>
<td>Critical Micelle Concentration</td>
</tr>
<tr>
<td>µ</td>
<td>Specific growth rate</td>
</tr>
<tr>
<td>P<sub>max</sub></td>
<td>Maximum product concentration</td>
</tr>
<tr>
<td>X<sub>max</sub></td>
<td>Maximum biomass concentration</td>
</tr>
<tr>
<td>Y<sub>p/s</sub></td>
<td>Product yield coefficient (g product formed per g substrate utilized)</td>
</tr>
<tr>
<td>Y<sub>p/x</sub></td>
<td>Product yield coefficient (g product formed per g biomass formed)</td>
</tr>
<tr>
<td>Y<sub>x/s</sub></td>
<td>Biomass yield coefficient (g biomass formed per g substrate utilized)</td>
</tr>
<tr>
<td>et al.</td>
<td>And friends</td>
</tr>
<tr>
<td>sp.</td>
<td>Species</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>NH₄NO₃</td>
<td>Ammonium nitrate</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>K<sub>d</sub></td>
<td>Decay constant</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various biosurfactants produced by different microbes.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Common methods employed for the recovery of biosurfactants.</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Some properties of biosurfactant commonly used in several applications.</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Differences between biosurfactant and synthetic surfactant.</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Origin of bacteria isolated from petroleum-related industries.</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>Screening of biosurfactant-producing bacteria using four different methods.</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Results for biochemical tests of the selected isolates.</td>
<td>57</td>
</tr>
<tr>
<td>5.1</td>
<td>Specific growth rates and maximum biomass of AB-Cr1 and ETL-Cr1 grown at 37°C, pH 6.5-6.8 in medium supplemented with various initial glucose concentrations.</td>
<td>65</td>
</tr>
<tr>
<td>5.2</td>
<td>Specific growth rates and maximum biomass of AB-Cr1 and ETL-Cr1 grown in Ramsay medium supplemented with 3mM glucose adjusted to various initial pH.</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Specific growth rates and maximum cell biomass of AB-Cr1 and ETL-Cr1 grown in medium supplemented with 3mM glucose at pH 7.0, incubated at various temperatures.</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Kinetic analysis of growth and biosurfactant</td>
<td>77</td>
</tr>
</tbody>
</table>
production for isolates AB-Cr1 and ETL-Cr1 grown at 37°C, in medium supplemented with either glucose or crude oil or both glucose and crude oil.

5.5 Kinetic analysis of growth and biosurfactant production for bacterial mix culture system 1:1 (AB-Cr1:ETL-Cr1) grown at 37°C, in medium supplemented with either glucose or both glucose and crude oil.

6.1 Kinetic analysis for growth and biosurfactant production by AB-Cr1 grown at 37°C, in medium supplemented with various initial glucose concentrations.

6.2 Kinetic analysis for growth and biosurfactant production by AB-Cr1 grown in medium controlled at various pH values, supplemented with 3mM glucose and incubated at 37°C.

7.1 Emulsification activity and stabilization of bioemulsifiers by isolated biosurfactants.

7.2 TLC analysis of biosurfactant produced by AB-Cr1 and ETL-Cr1 isolates based on the Rf values.

7.3 Relative positions of peaks from GC-MS for methyl esters of fatty acids.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure of rhamnolipid produced by Pseudomonas aeruginosa.</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of surfactin produced by Bacillus subtilis.</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>The amphiphilic structure of a surfactant.</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Metabolic pathway of glucose utilization during biosurfactant production</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic illustration showing different types of fermentation kinetics of biosurfactant production.</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>β-hemolysis on blood agar indicated to the presence of biosurfactant in the culture of AB-Cr1 and ETL-Cr1.</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Colony of AB-Cr1 observed under stereo scan microscope using magnification 50x.</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Colony of ETL-Cr1 observed under stereo scan microscope using magnification 50x.</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Digital photos of bacterial isolates AB-Cr1 and ETL-Cr1 under phase-contrast microscope using magnification 100x with oil immersion.</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Growth curve of AB-Cr1 grown in Ramsay medium pH 6.5-6.8 at 37°C as a factor of initial glucose concentrations.</td>
<td>63</td>
</tr>
<tr>
<td>5.2</td>
<td>Growth curve of ETL-Cr1 grown in Ramsay medium pH 6.5-6.8 at 37°C as a factor of initial glucose concentrations.</td>
<td>63</td>
</tr>
<tr>
<td>5.3</td>
<td>The specific growth rates of AB-Cr1 and ETL-Cr1</td>
<td>64</td>
</tr>
</tbody>
</table>
grown in Ramsay medium pH 6.5-6.8 at 37°C, as a factor of initial glucose concentrations.

5.4 Growth optimization of isolates AB-Cr1 and ETL-Cr1 grown at 37°C in medium supplemented with 3mM glucose, as a factor of pH.

5.5 Growth optimization of isolates AB-Cr1 and ETL-Cr1 grown in medium supplemented with 3mM glucose at pH 7.0, as a factor of temperature.

5.6 Relationship of growth, glucose consumption and biosurfactant production by AB-Cr1 isolate grown in Ramsay medium supplemented with 3mM glucose, adjusted to initial pH 7.0 and incubated at 37°C.

5.7 Relationship of growth, glucose consumption and biosurfactant production by ETL-Cr1 isolate grown in Ramsay medium supplemented with 3mM glucose, adjusted to initial pH 7.0 and incubated at 37°C.

5.8 Relationship of growth, glucose consumption, pH, surface tension and biosurfactant production for isolates AB-Cr1 and ETL-Cr1 grown in Ramsay medium supplemented with glucose and crude oil, respectively.

5.9 Relationship of growth and biosurfactant production by isolates AB-Cr1 and ETL-Cr1 grown in Ramsay medium supplemented with 5% (v/v) crude oil.

5.10 Relationship between specific growth rates (μ) of isolates AB-Cr1 and ETL-Cr1 with the specific rates of product formation (q_p) in medium supplemented with either (i) crude oil, or (ii) both glucose and crude oil, or (iii) glucose.

5.11 Relationship of growth and biosurfactant production by bacterial mix culture system 1:1, grown in Ramsay medium supplemented with glucose and glucose + crude oil.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Maximum cell biomass and biosurfactant production by AB-Cr1 grown in medium supplemented with 3mM glucose, as a factor of temperature.</td>
</tr>
<tr>
<td>6.2</td>
<td>Relationship between biosurfactant production, growth and oxygen consumption (A), glucose consumption and pH (B), surface, interfacial and spreading tension (C) by AB-Cr1, grown in medium supplemented with 3mM glucose adjusted to initial pH 7.0 and incubated at 37ºC.</td>
</tr>
<tr>
<td>6.3</td>
<td>Surface and interfacial tension reduction of the cell-free culture of AB-Cr1 grown in medium supplemented with 3mM glucose, as a factor of temperature.</td>
</tr>
<tr>
<td>6.4</td>
<td>The yield coefficients for biosurfactant and biomass production by AB-Cr1, grown in medium supplemented with 3mM glucose, as a factor of temperature.</td>
</tr>
<tr>
<td>6.5</td>
<td>Maximum cell biomass and biosurfactant production by AB-Cr1 grown at 37ºC, as a factor of various initial glucose concentrations.</td>
</tr>
<tr>
<td>6.6</td>
<td>Maximum cell biomass and biosurfactant production by AB-Cr1 grown in medium supplemented with 3mM glucose at 37ºC, as a factor of pH.</td>
</tr>
<tr>
<td>6.7</td>
<td>Surface tension and interfacial tension reduction of the cell-free culture of AB-Cr1, grown in medium supplemented with 3mM glucose at 37ºC, as a factor of pH.</td>
</tr>
<tr>
<td>6.8</td>
<td>The relationship between biosurfactant production, growth and oxygen consumption (A), surface and interfacial tension (B) by AB-Cr1 grown in medium at controlled pH 7.0 and incubated at 37ºC.</td>
</tr>
<tr>
<td>6.9</td>
<td>Maximum biomass and biosurfactant production by AB-Cr1 grown in medium supplemented with 3mM glucose at 37ºC, as a factor of various initial NH₄NO₃ concentrations.</td>
</tr>
<tr>
<td>6.10</td>
<td>The relationship between biosurfactant production,</td>
</tr>
</tbody>
</table>
growth and oxygen consumption (A), surface and interfacial tension (B), by AB-Cr1 grown in medium supplemented with 15mM NH$_4$NO$_3$ and incubated at 37°C.

6.11 The yield coefficients for biosurfactant and biomass production by AB-Cr1 grown in medium supplemented with 3mM glucose and incubated at 37°C, as a factor of various initial NH$_4$NO$_3$ concentrations.

7.1 Effect of pH on the activity of the emulsifier produced by AB-Cr1 and ETL-Cr1 isolates.

7.2 Schematic diagram of the variation of surface tension, interfacial tension and the CMC point with surfactant concentration.

7.3 Surface tension of a solution against the concentration of the biosurfactant produced by AB-Cr1 and ETL-Cr1, grown in medium supplemented with glucose as sole source of carbon.

7.4 Surface tension of a solution against the concentration of the biosurfactant produced by AB-Cr1 and ETL-Cr1, grown in medium supplemented with glucose and crude oil.

7.5 The pH stability test of biosurfactant produced by AB-Cr1 and ETL-Cr1 grown in medium supplemented with glucose, based on the change of surface tension values.

7.6 Thermal stability test of biosurfactant produced by AB-Cr1 and ETL-Cr1 grown in medium supplemented with glucose, based on the change of surface tension values.

7.7 Infrared spectrum of the surface-active fraction extracted from culture of AB-Cr1 grown in medium supplemented with glucose as the sole source of carbon.

7.8 Infrared spectrum of the surface-active fraction extracted from culture of ETL-Cr1 grown in
medium supplemented with glucose as the sole source of carbon.

7.9 Infrared spectrum of the surface-active fraction extracted from culture of AB-Cr1 grown in medium supplemented with both glucose and crude oil as carbon sources.

7.10 Infrared spectrum of the surface-active fraction extracted from culture of ETL-Cr1 grown in medium supplemented with both glucose and crude oil as carbon sources.

7.11 GC-MS chromatogram of fatty acid methyl ester from a culture medium of AB-Cr1.

7.12 GC-MS chromatogram of fatty acid methyl ester from a culture medium of ETL-Cr1.

7.13 Structure of pentadecanoic acid.

7.14 Structure of octadecanoic acid.

7.15 Structure of heptadecanoic acid.

7.16 Mass spectrum of pentadecanoic acid from a culture of AB-Cr1.

7.17 Mass spectrum of octadecanoic acid from a culture of AB-Cr1.

7.18 Mass spectrum of heptadecanoic acid from a culture of ETL-Cr1.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Graft OD$_{600}$ versus cell biomass</td>
<td>147</td>
</tr>
<tr>
<td>B</td>
<td>Glucose standard curve</td>
<td>148</td>
</tr>
<tr>
<td>C</td>
<td>Biochemical characterization methods</td>
<td>149</td>
</tr>
<tr>
<td>D</td>
<td>Production of biosurfactant and surface tension reduction in the medium grown with AB-Cr1 isolate</td>
<td>161</td>
</tr>
<tr>
<td>E</td>
<td>Relationship of growth, glucose consumption and biosurfactant production by bacterial mix culture system 1:1, grown in Ramsay medium supplemented with glucose and glucose + crude oil</td>
<td>162</td>
</tr>
<tr>
<td>F</td>
<td>Determination of decay constant</td>
<td>163</td>
</tr>
<tr>
<td>G</td>
<td>Mass spectrums of fatty acid methyl esters from the culture of AB-Cr1 and ETL-Cr1 isolates.</td>
<td>164</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Overview: Surfactant and Biosurfactant

Surfactants are amphiphilic compounds that reduce the free energy of the system by replacing the bulk molecules of higher energy at an interface [Mulligan, 2004]. They contain a hydrophobic moiety with little affinity for the bulk medium and a hydrophilic portion that is attracted to the bulk medium. Surfactants have been used industrially as adhesives, deemulsifiers, flocculating, wetting and forming agents, lubricants and penetrants [Mulligan and Gibbs, 1993].

Because of their amphiphilic nature, surfactants tend to accumulate at interfaces (air-water and oil-water) and surfaces. As a result, surfactants reduce the forces of repulsion between unlike phases at interfaces or surfaces and allow the two phases to mix more easily [Bodour and Miller-Maier, 2002]. Due to the presence of surfactant, less work is required to bring a molecule to the surface and the surface tension is reduced. The ability to reduce surface tension is a major characteristic of surfactant. It is obvious that their surface and membrane-active properties play an important role in the expression of their activities.

Surfactants are key ingredients used in detergents, shampoos, toothpaste, oil additives, and a number of other consumer and industrial products. They constitute an important class of industrial chemicals widely used in almost every sector of modern industry. The total surfactant production has exceeded 2.5 million tones in 2002 [Deleu and Paquot, 2004] for many purposes such as polymers, lubricants and
solvents. The growth rate is related to the world demand in detergents since this sector uses over 50% of surfactant production [Deleu and Paquot, 2004].

From the total surfactants output, about 54% of them is consumed as household or laundry detergents, with only 32% destined for industrial use [Cameotra and Makkar, 1998]. Almost all surfactants currently in use are chemically derived from petroleum. The choice of surfactant is based on product cost. Generally, surfactants has been extensively used to save energy and consequently energy cost. For example, the new generation of detergents wash effectively at much lower temperatures, resulting in significant energy saving. Physicochemical behavior, charge-type, solubility and adsorption behavior are some of the most important selection criteria for surfactants [Mulligan, 2004].

However, as many industry and research organizations concern to the environmental approach, they are currently attempted to find new ways of producing surfactants. There are two new strategic approaches that are taken into account in developing new surfactant, which are i) the impact of the surfactant to the environment and ii) the functionalities of the surface-active molecules. Synthetic surfactants exhibit a low rate of biodegradation and a high potential to aquatic toxicity. For these reasons, biosurfactants are seen to be the promising alternative for many purposes even though their performance could be slightly inferior or their prices are more expensive.

Biosurfactant is a structurally diverse group of surface-active molecule synthesized by microorganisms. Their capability of reducing surface and interfacial tension with low toxicity and high specificity and biodegradability, lead to an increasing interest on these microbial products as alternatives to chemical surfactants [Banat et al., 2000]. Hester (2001) from the Technical Insights estimated that biosurfactants could capture 10% of the surfactant market by the year 2010 with sales of $US200 million. However, up to now, biosurfactants is still unable to compete with the chemically synthesized surfactants in the surfactant market. This could be due to their high production costs in relation to inefficient bioprocessing method available, poor strain productivity and the need to use expensive substrates [Cameotra and Makkar, 1998; Deleu and Paquot, 2004].

The interest in biosurfactant has been steadily increasing in recent years due to the possibility of their production through fermentation and their potential
applications in such areas as the environmental protection. The uniqueness with unusual structural diversity, the possibility of cost-effective ex-situ production and their biodegradability are some of the properties that make biosurfactant a promising choice for use in environmental application [Hua et al., 2003].

Initial focus of industrial interest towards biosurfactants concentrates on the microbial production of surfactants, cosurfactants and so on for the application on microbial-enhanced oil recovery (MEOR) [Kosaric et al., 1987]. The applications of biosurfactants however, are still currently remained at the developmental stage of industrial level. The development of biosurfactant application in industries has focused mainly on high biosurfactant production yield and the production of highly active biosurfactants with specific properties for specific applications.

Majority of surfactants produced today is of petrochemical origin beside of the renewable resources like fats and oils [Deleu and Paquot, 2004]. Amongst the renewable raw materials, oleochemical products represent half of the total surfactant production. The petrochemical industry is one of the important sector in Malaysia, with investments totaling RM28 billion as at the end of 2002 [Mida Malaysia]. Exxon Mobil is one of the multinational petrochemical companies that work in collaboration with Malaysia’s national petroleum company, Petronas. This collaboration clearly make Malaysia as a potential country as an investment location for petrochemical industries.

Unfortunately, industrial wastewater from petroleum-related industries has been identified as one of the major source of pollution in Malaysia. The biodegradation of petroleum pollutant and its related compound is limited by poor availability to the microorganisms, due to their hydrophobicity and low aqueous solubility. This suggested that by applying biosurfactants to influence the bioavailability of the contaminant, can possibly enhancing the solubility of these compounds. Due to their biodegradability and low toxicity, they are in demand to be use in remediation technologies [Mulligan, 2004].

At present, biosurfactants plays an important application in petroleum-related industries which is use in enhanced oil recovery, cleaning oil spills, oil-contaminated tanker cleanup, viscosity control, oil emulsification and removal of crude oil from sludges [Daziel et al., 1996, Bertrand et al., 1994]. These industries are known to be the potential target for the application of these compounds. This is due to the ability
of biosurfactant-producing microorganisms to use petroleum or its’ products as substrates as well as the properties of the biosurfactant which required less rigorous testing than chemical surfactant [Cooper, 1986].

To date, there are numbers of reports on the synthesis of various types of biosurfactants by microorganisms using water-soluble compounds such as glucose, sucrose, ethanol or glycerol as substrates [Desai and Banat, 1997]. Petroleum-related industry was found to be one of the industries that have a great potential in producing a microorganism that may produced biosurfactants. Hence, there could probably be a potential chance of producing biosurfactants using locally isolated bacteria originated from petrochemical wastes or other wastewater available in this country. It has been focused here that improving the method of biosurfactant production and characterizing the major properties of the biosurfactant are highly important in the commercial application of biosurfactant.

1.2 Scope and Objectives of the Current Project

The present study focused on studying the production of biosurfactant by bacteria isolated from petrochemical wastes. Ten bacterial isolates were screened for potential biosurfactant producer(s) and two of them were found able to produce biosurfactant by various screening methods. It was therefore of interest to characterize these bacteria and study their ability to produce biosurfactant.

The major part of this thesis describes research into the production of biosurfactant by these bacteria in various conditions tested. The study was initiated with basic identification based on cellular and colony morphologies, followed biochemical characteristics of these bacteria. The study on production of biosurfactant by these isolates was initiated by optimizing the growth of the potential biosurfactant producers as the factor of several parameters such as initial glucose concentration, initial pH and incubating temperature. The ability of these bacteria to produce biosurfactant as single and mix bacterial cultures, in medium supplemented with glucose and/or crude oil were then studied using the optimum growth conditions. Optimization of biosurfactant production by the best biosurfactant producer was further studied in bioreactor as a factor of temperature, initial glucose
concentration, pH and initial nitrogen concentration. This study was also sought to
the preliminary characterization of the crude biosurfactant produced by means of
their physicochemical properties. Characterization studies included emulsification
activity, critical micelle concentration (CMC), stability test, thin layer
chromatography (TLC), fourier transform infrared (FTIR) and gas chromatography-
mass spectrometry (GC-MS) analyses.

In general, the objective of this research is to study the biosurfactant
production by microbial fermentation process and characterized the crude
biosurfactant in order to determine their physicochemical properties. Therefore, this
study is conducted with the specific objectives:

- To screen and characterize the potential biosurfactant-producing microbes
 from petrochemical waste samples.

- To optimize the biosurfactant production in terms of productivity and the
 yield of biosurfactants from the substrates.

- To characterize the crude biosurfactant produced by the bacterial isolates.
REFERENCES

Solubilization of Pesticides”. *Environmental Science and Technology*. 34. 4923-4930.

