COEXISTENCE & SHARING BETWEEN LTE-ADVANCED & 3.5GHZ FSS FREQUENCY SPECTRUM

AHMAD ZHAFRI BIN AHMAD ZAHIR

A project report submitted in fulfilment of the requirements for the award of the degree of Master of Engineering

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

MAY 2011
to my

Norajon Mohd Kasim & Ahmad Zahir Mokhtar
ACKNOWLEDGEMENTS

In this column, the author would like to express his most gratitude to Allah the Almighty for his guidance and blessings which have allow the publication of this thesis.

Heartiest thanks to Professor Dr. Tharek Abd Rahman as the supervisor, and Mr Walid as the supervisor assistant for all the knowledge, support, and patience in ensuring a success research as presented in this thesis.

The author would also like to quote the names of his beloved parents, Norajon Mohd Kassim and Ahmad Zahir Mokhtar for all the love, support, and moral encouragements, in ensuring the completion of this study, thus publication of this research thesis.

The author would also glad to mention his gratitude to the best ever study team, which have been supporting each other for the past two years, Mrs Shuhaida, Mr Uthayakumar, Mr Ang Wai Hong, and Mr Adam. May we move forward together brightly as well.

Finally, thanks to all other whose names has failed to be mentioned on this page but has in one or another way contributed to the accomplishment of this study.
ABSTRAK

ABSTRACT

World have seen vast development in wireless communication standards to accomplish the emerging demands of higher speed real-time and multimedia functional communication needs. World Radio Conference 2007 (WRC 2007) has discussed the details of the breakthrough standard called LTE Advanced, a system which is beyond IMT-2000 or also known as 4G. While International Telecommunication Union (ITU) is working on evaluating suitable specification design to be deployed for LTE Advanced, WRC 2007 has concurrently work to identify suitable frequency bands for the LTE-Advanced to operate. It is obvious from the recommendations that frequency band of 3400MHz until 3600MHz is proposed for Asian countries, including Malaysia. Another frequency band from 3400MHz and 4200MHz is actively used by fixed satellite services (FSS) downlink operations as well. This co-existence and frequency band sharing especially involving the frequency band of 3400MHz to 3600MHz requires stringent interference studies, to determine if both systems could operates side-by-side without interfering each other. The interference of LTE Advanced towards Fixed Satellite Services (FSS) system when they co-exist and share the same operating frequency band is expected to cause severe downtime, economical losses, and potential safety threat to the users. This is because of the wide usage of FSS applications in critical applications such as business transaction data communication, healthcare remote multimedia communication, and even the military services. This justify the criticality of performing coexistence and sharing study between these two systems, and appropriate mitigation steps to ensure both systems could work side-by-side without killing one another out. This research is started with extensive literature review works. It is then followed by identifying the scope of simulation scenario to be performed in this case. Next is to identify the accurate simulation parameters for the given simulation scenario. These values represent systems characteristics to be simulated and must be accurately feed in, ensuring accurate results. It is then being brought up to perform the simulation work itself. Simulation work is started with initial system parameter values, which are then being varied to check variations of results. Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) software is used to simulate and calculate possibilities of interference and system’s compatibility between the two infrastructures. Results obtained from these variations provide clearer understanding and able to suggest appropriate mitigation plan; the physical distance and operating frequency distance values in this case. A firm conclusion is made following the above findings, and appropriate future works could be suggested then. Based on the simulation works done in SEAMCAT, the co-existence and sharing between LTE Advanced and FSS system operating at the 3500MHz, the physical separation distance needed between these systems are impractically huge. Oppose to that, the minimum frequency distance of 25 MHz is needed between the operating frequency of both systems to operate without interference from each other when FSS bandwidth used is 4KHz. In addition, the minimum frequency distance of 8MHz is needed between the operating frequency of both systems is required to operate without interference from each other when FSS bandwidth used is 36MHz.
LIST OF TABLES

Table 1: 4G Performance Target with Cell Enhancement Features...5
Table 2: LTE-Advanced Nomination Bands of WRC 2007...5
Table 3: Satellite Bands with its Frequency Range...6
Table 4: LTE-Advanced Release 8 Specifications..16
Table 5: FSS C-Band Simulation Parameters..16
Table 6: General Operating Band Unwanted Emission Limits for 5, 10, 15, and 20MHz Channel Bandwidth (E-UTRA Bands>1GHz)..18
LIST OF FIGURES

Figure 1: GSM Technology Evolution to LTE-Advanced...4
Figure 2: VAN Diagram...5
Figure 3: Standard & Extended C-Band Frequency Range..6
Figure 4: A Typical Victim and Interferer Scenario for a Monte Carlo Simulation Trial.................8
Figure 5: Simplified Terminology Used in SEAMCAT..9
Figure 6: Example of SEAMCAT Simulation Shot...9
Figure 7: LTE Advanced and PETRONAS VSAT FSS Uplink & Downlink Frequency Bands........13
Figure 8: Project Methodologies..14
Figure 9: Simulation Scenario..15
Figure 10: SEAMCAT Interfering Link Tab..17
Figure 11: It Emission Masks at 20MHz Bandwidth..18
Figure 12: It Emission Masks at 50MHz Bandwidth..19
Figure 13: It Emission Masks at 100MHz Bandwidth..19
Figure 14: Wanted Receiver, Wr Tab..20
Figure 15: Interfering Transmitter to Wanted Receiver Path Tab..21
Figure 16: Victim Receiver to Interfering Transmitter Path Tab..22
Figure 17: Victim Receiver, Vr Tab..23
Figure 18: Wanted Transmitter, Wt Tab..25
Figure 19: Wanted Transmitter, Wt to Victim Receiver, Vr Path Tab...26
Figure 20: MEASAT3 91.5°E C-Band Transponders Global Beam..27
Figure 21: MEASAT3 91.5°E C-Band Transponders Asia Beam..27
Figure 22: Example of iRSS & dRSS Readings at It-Vr Distance of 150km....................................28
Figure 23: Example of ICE Output in SEAMCAT..29
Figure 24: No Overlap Region between Vr Mask and It Mask..34
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Background..1
1.2 Objectives..2
1.3 Problem Statement..2
1.4 Methodology..3
1.5 Thesis Contents..3

CHAPTER 2 LITERATURE REVIEWS
2.1 LTE Advanced/4G...4
2.2 Fixed Satellite Services (FSS)...6
2.3 Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT)........8
2.4 LTE Advanced versus FSS...10
2.5 WiMAX versus FSS...11
2.6 Fixed Broadband Wireless Access versus FSS..12
2.7 Statement of Hypothesis of Co-Existence between LTE Advanced and FSS in 3500 MHz Operating Frequency..13

CHAPTER 3 METHODOLOGIES
3.1 Project Methodology..14
3.2 Simulation Scenario...15
3.3 Simulation Parameters...16
3.4 Simulation Basic Setup...17
3.4.1 Interfering Link Setup in SEAMCAT...17
3.4.2 Victim Link Setup in SEAMCAT...23
3.5 Co-Channel Interference Simulation...28
3.6 Adjacent Channel Interference Simulation...29

CHAPTER 4 RESULTS & DISCUSSIONS
4.1 Co-Channel Interference...30
4.2 Adjacent Channel Interference..33

CHAPTER 5 CONCLUSIONS...35
CHAPTER 1
INTRODUCTION

1.1 Background

World have seen vast development in wireless communication standards to accomplish the emerging demands of higher speed real-time and multimedia functional communication needs. Without exceptions are the interference issues which have became vital in ensuring these vogue technologies are able to work side-by-side, meeting the market’s demand. World Radio Conference 2007 (WRC 2007) has discussed the details of the breakthrough standard called LTE Advanced, a system which is beyond IMT-2000 or also known as 4G. While International Telecommunication Union (ITU) is working on evaluating suitable specification design to be deployed for LTE Advanced, WRC 2007 has concurrently work to identify suitable frequency bands for the LTE-Advanced to operate.

It is obvious from the recommendations that frequency band of 3400MHz until 3600MHz is proposed for Asian countries, including Malaysia. Another frequency band from 3400MHz and 4200MHz is actively used by fixed satellite services (FSS) downlink operations as well. This coexistence and frequency band sharing especially involving the frequency band of 3400MHz to 3600MHz requires stringent interference studies, to determine if both systems could operates side-by-side without interfering each other. The interference studies are motivated by multi-billion worth of FSS applications around the globe be it for television broadcasting, credit card transactions data communications, and even the military services.
1.2 Objectives

In this research, a scenario of LTE Advanced deployment versus current C-band FSS application in PETRONAS fuel retails in Kuala Lumpur, Malaysia environment is studied. The C-band FSS system includes also C-band transponders from MEASAT3 at 91.5°E as the transmitters. The scope is limited to Kuala Lumpur coverage area which makes up to approximately 240 kilometres square.

At the end of the study, this research is able to identify;

1) Minimum distance separation needed between an LTE Advanced and FSS system in order for both systems to work without being interfered. This involves studies of interference possibilities numbers as separation distance is gradually increase to a point where no interference occurred between them. In other words, we could also refer this to co-channel interference check, as both systems will be operating in same frequency, which is 3500MHz in this study.

2) Minimum operating frequency separation needed between an LTE Advanced and FSS system in order for both systems to work without being interfered. This needs an adjacent channel interference study, where both systems will be co-located at the same place. As operating frequency made increased to allow changes of frequency distance, a check will be made to each increment of frequency gap until no interference could occur between both systems detected.

For the interest of this research, the operating frequency of 3500MHz is used as the reference operating frequency of interest. This is because; frequency overlapping between LTE Advanced and FSS occurs from 3400MHz and 3600MHz.

1.3 Problem Statement

The interference of LTE Advanced towards Fixed Satellite Services (FSS) system when they co-exist and share the same operating frequency band is expected to cause severe downtime, economical losses, and potential safety threat to the users. This is because of the wide usage of FSS applications in critical applications such as business transaction data communication, healthcare remote multimedia communication, and even the military services. In addition to that, companies who operate via satellites services such as television broadcasting may have to absorb losses worth billions of dollars for the service interruption if the FSS system is interfered.

This justify the criticality of performing coexistence and sharing study between these two systems, and appropriate mitigation steps to ensure both systems could work side-by-side without killing one another out.
1.4 Methodology

This research is started with extensive literature review works. This includes readings and gaining understanding of both LTE Advanced and Fixed Satellite Services (FSS) operating concepts, their applications, as well as the advantages and disadvantages present. This is vital to ensure the scenario is simulated within full understanding of how the systems actually work and interfere each other.

It is then followed by identifying the scope of simulation scenario to be performed in this case. It is very vague to perform any interference study within narrowing down to a specific scenario where variables are likely easily to be manipulated. Next is to identify the accurate simulation parameters for the given simulation scenario. These values represent systems characteristics to be simulated and must be accurately feed in, ensuring accurate results.

After above steps are properly done, it is then being brought up to perform the simulation work itself. Simulation work is started with initial system parameter values, which are then being varied to check variations of results. Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) software is used to simulate and calculate possibilities of interference and system’s compatibility between the two infrastructures.

Results obtained from these variations provide clearer understanding and able to suggest appropriate mitigation plan; the physical distance and operating frequency distance values in this case. A firm conclusion is made following the above findings, and appropriate future works could be suggested then.

1.5 Thesis Contents

The author have arranged this thesis writings to be started with brief introduction on the topic of co-existence and sharing of frequency band between LTE Advanced and Fixed Satellite Services (FSS) specifically at 3500MHz operating frequency. It is then followed by a literature review section which explains deeper the LTE Advanced, FSS, and the Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) software. To equip full understanding on the interference studies, related papers published is then discussed. Based on the facts and figures gained from the paper discussion, a hypothesis is drawn specifically for this study.

Consequently the author continued with the research methodology. This includes all simulation steps taken in details, simulation scenario, as well as the system parameters used in this research. Each and every functions utilized from SEAMCAT is explained explicitly. Then, the results obtained from the simulations carried out are presented. The values obtained are then analyzed and discussed to form a finding.

It is then followed by the last section of concluding the research objective, the findings; including some suggestions for future works could be conducted.
REFERENCES

