A STRUCTURED CRITICAL SUCCESS FACTORS MODEL FOR IMPLEMENTING PROJECT QUALITY MANAGEMENT SYSTEM IN CONSTRUCTION

MAT NAIM BIN ABDULLAH @ MOHD ASMONI

UNIVERSITI TEKNOLOGI MALAYSIA
A STRUCTURED CRITICAL SUCCESS FACTORS MODEL FOR IMPLEMENTING PROJECT QUALITY MANAGEMENT SYSTEM IN CONSTRUCTION

MAT NAIM BIN ABDULLAH @ MOHD ASMONI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Facilities Management)

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia

SEPTEMBER 2012
Specially dedicated to my father, family, wife and children and the person that I love most, my late mother. You all are always in my heart.
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. Praise be to Allah, the Lord of the universe.

Firstly, I wish to express my utmost gratitude to my thesis supervisor, Professor Sr. Dr. Abdul Hakim Mohamed for his encouragement, guidance, critics and patience without which would not enable me to complete my study. I am indebted and fortunate to get valuable advice and help from many extraordinarily capable people that are impossible to mention all their names here. Thanks to: All PhD colleagues, Dr Saidin, Assoc. Prof. Wan Yusoff Wan Mahmood, Dr Izran, Syakirin, Dr Hanim, Dr Choong, Raja Marziani, Shahrizal, Assoc. Prof. Dr Maizan Baba and Dr Noorazman. All academic and non-academic staffs of the faculty especially from the Property Management Department.

I also would like to express my appreciation to Universiti Teknologi Malaysia that provides the financial assistance in the form of scholarships and monthly allowance during the course of the PhD program.

Special thanks to my wife, Dr Haslinda Mohamed Kamar who believed from the beginning that I could complete this research in time and helped arrange a home life that is conducive for study. Finally, to my children, Anas, Huda, Ammar and Hasya, may Allah bless you all for bringing joy during the stressful moment and I pray to Allah that you all will complete your study up to the PhD level as well.
ABSTRACT

In the ISO 9000-based project quality management system (PQMS), the parties involved implement the system according to the requirements stated in the individual quality plan. This approach creates a lot of problems such as lack of commitment and teamwork; contradiction of requirements between the parties’ quality systems, contract and project management; and generation of unnecessary voluminous and duplicate paperwork. These problems are augmented by the lack of knowledge and skills of the construction players in managing the PQMS. One of the solutions is the implementation of Critical Success Factors (CSF) that prompted this research with the formulation of three related objectives which are: 1) to identify the PQMS’s CSF; 2) to evaluate the criticality and ranks of the PQMS’s CSF; and 3) to develop the relationship model for the PQMS’s CSF. To achieve the objectives, three research methodologies were employed that involved literature review, expert’s opinions and questionnaire survey. Six PQMS’s CSF were identified as constructs of the study with each CSF comprising three indicators. The six PQMS’s CSF were client’s commitment, integration of quality plan, education and training, measurement and improvement, teamwork and communication, and the use of the information, communication and technology (ICT). Having confirmed the constructs through the analysis of the questionnaire survey data, experts’ opinions were sought to develop the relationship among the PQMS’s CSF using Interpretive Structural Modelling (ISM). The ISM-based model was then evaluated using Structural Equation Modelling (SEM). The final model is a four-factor model with eleven indicators. It is a structured CSF model for the PQMS implementation where the client’s commitment, and the education and training in quality are the drivers; followed by the integration of quality plan; and finally the measurement and improvement.
ABSTRAK

Di dalam Sistem Pengurusan Kualiti Projek (SPKP) yang berasaskan ISO 9000, pihak-pihak yang terlibat melaksanakan sistem tersebut berdasarkan kehendak-kehendak yang ditetapkan di dalam pelan kualiti persendirian. Pendekatan ini menimbulkan banyak masalah seperti kurangnya komitmen yang bersepadu dan kerja berpasukan; percanggahan kehendak-kehendak di antara sistem kualiti, kontrak dan pengurusan projek; dan penghasilan kertaskerja yang banyak dan bertindih dan tidak diperlukan. Masalah-masalah ini menjadi lebih besar disebabkan oleh kekurangan ilmu dan kemahiran di dalam melaksanakan SPKP. Satu cara penyelesaian ialah dengan melaksanakan faktor kejayaan kritikal (FKK) yang telah mencetuskan kajian ini dengan pembentukan tiga objektif yang berkaitan iaitu: 1) mengenalpasti FKK SPKP; 2) menilai tahap kritikal dan kedudukan FKK SPKP; dan 3) membangunkan model hubungan bagi FKK SPKP. Untuk mencapai objektif tersebut, tiga metodologi kajian telah digunakan yang melibatkan kajian literatur, pendapat pakar dan kajian soalselidik. Enam FKK SPKP telah dikenalpasti sebagai konstruk dengan setiap FKK mempunyai tiga indikator. Enam FKK SPKP tersebut ialah komitmen klien; pelajaran dan latihan; pengukuran dan penambahbaikan; integrasi plan kualiti; penggunaan ICT; dan kerja berpasukan dan komunikasi. Setelah konstruk disahkan, pandangan pakar diambil untuk membentuk perhubungan sesama FKK SPKP dengan menggunakan kaedah “Interpretive Structural Modelling” (ISM). Model berasaskan ISM tersebut kemudiannya diuji dengan kaedah “Structural Equation Modelling” (SEM). Model yang terhasil adalah sebuah model empat-faktor dengan sebelas indikator. Ianya adalah sebuah model FKK berstruktur untuk perlaksanaan SPKP di mana komitmen klien, dan pelajaran dan latihan adalah pemandu; diikuti oleh integrasi plan kualiti; dan akhirnya pengukuran dan penambahbaikan.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of the Research 1
1.2 Problem Statement 4
1.3 Objective of the Research 8
1.4 Scope of the Research 9
1.5 Research Methodology 9
 1.5.1 Literature Review 10
 1.5.2 Experts’ Opinions 10
 1.5.3 Questionnaire Survey 11
1.6 Significance of the Research 13
1.7 Organisation of the Thesis

2 CRITICAL SUCCESS FACTORS FOR ISO 9000-BASED PROJECT QUALITY MANAGEMENT SYSTEM

2.1 Introduction 15

2.2 Definition of Quality, QMS and PQMS 16

2.3 ISO 9001 Quality Management System 17

2.3.1 ISO 9001 Principles 18

2.3.2 Project Quality Plan (PQP) 21

2.4 ISO 9000-based Project Quality Management System (PQMS) 24

2.5 Previous Research Related to PQMS 24

2.6 CSF and Its Identification Methods 33

2.7 The CSF for PQMS 35

2.7.1 Client’s Commitment to Quality 61

2.7.2 Integration of Quality Plan with Other Requirements 64

2.7.3 Performance Measurement and Improvement 67

2.7.4 Education and Training in Quality Management 69

2.7.5 Teamwork and Communication 71

2.7.6 Use of Information and Communication Technology (ICT) in Managing Information 73

2.8 Constructs of PQMS’s CSF and Its Indicators 74

2.9 Summary 78

3 RESEARCH METHODOLOGY 79

3.1 Introduction 79

3.2 Research Methodology 79

3.3 Literature Review 86
3.4 Experts’ Opinions and Formation of ISM-based Model 87

3.4.1 Structural Self-Interaction Matrix (SSIM) 88
3.4.2 Initial Reachability Matrix 91
3.4.3 Final Reachability Matrix 93
3.4.4 Classification of Factors 94
3.4.5 Level Partitions 95
3.4.6 Formation of ISM-based Model 98

3.5 Questionnaire Survey 100

3.5.1 Data Collection Procedure 101
 3.5.1.1 Sample Size and Respondent 101
 3.5.1.2 Questionnaire Design 102
 3.5.1.3 Questionnaire Distribution and Collection 106

3.5.2 Analysis of Data 107
 3.5.2.1 Analysis Using SPSS 107
 3.5.2.2 The Structural Equation Modelling (SEM) Procedures 108

3.6 Summary 117

4 DATA COLLECTION AND ANALYSIS 119

4.1 Introduction 119
4.2 Response Rate 119
4.3 Respondent’s Demographic Profile 120
4.4 Internal Consistency of the PQMS’s CSF 122
4.5 Agreement Level of the PQMS’s CSF 122
4.6 Usage Level of the PQMS’s CSF 124
4.7 Differences Between Group’s Opinions on the Agreement of the PQMS’s CSF 125
4.8 Ranking of PQMS’s CSF According to the 126
Construction Parties

4.9 Ranking of PQMS’s CSF According to the Working Level 128

4.10 Experts’ Opinions and ISM-based Structural Model 129
 4.10.1 Structural Self-Interaction Matrix (SSIM) 131
 4.10.2 Initial Reachability Matrix 135
 4.10.3 Final Reachability Matrix 136
 4.10.4 Classification of Factors 137
 4.10.5 Level Partitions 138
 4.10.6 Formation of ISM-based Model 140

4.11 SEM-based Structural Model 142
 4.11.1 Schematic Diagram and the Proposed SEM PQMS’s CSF Model 142
 4.11.2 CFA for Model A 144
 4.11.3 Analysis of Structural Model 155

4.12 Summary 159

5 RESULTS AND DISCUSSION 160

5.1 Introduction 160
5.2 CSF for PQMS Implementation 161
5.3 Criticality and Ranking of the PQMS’s CSF 164
5.4 Structural Relationship Model of the PQMS’s CSF 167
5.5 Summary 170

6 CONCLUSIONS AND RECOMMENDATIONS 171

6.1 Introduction 171
6.2 Main Conclusions 171
6.3 Implications and Significant Contribution of the Research 174
6.4 Thesis Limitation 176
6.5 Direction for Further Research 178
REFERENCES

Appendices A – F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Previous studies related to the CSF for PQMS</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>CSF for PQMS implementation</td>
<td>59</td>
</tr>
<tr>
<td>2.3</td>
<td>CSF and indicators for PQMS implementation</td>
<td>74</td>
</tr>
<tr>
<td>3.1</td>
<td>Types of research questions and their appropriate strategy</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>The blank SSIM for PQMS’s CSF</td>
<td>89</td>
</tr>
<tr>
<td>3.3</td>
<td>The comparison form for experts’ SSIM</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>Example of the comparison exercise between the experts’ SSIM on the PQMS’s CSF of measurement and improvement</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Example of the consensus SSIM for CSF of TQM implementation in SME industry</td>
<td>91</td>
</tr>
<tr>
<td>3.6</td>
<td>Example of initial reachability matrix for CSF of TQM implementation in SME industry</td>
<td>92</td>
</tr>
<tr>
<td>3.7</td>
<td>Example of final reachability matrix for CSF of TQM implementation in SME industry</td>
<td>93</td>
</tr>
<tr>
<td>3.8</td>
<td>Iteration 1</td>
<td>96</td>
</tr>
<tr>
<td>3.9</td>
<td>Iteration 2</td>
<td>97</td>
</tr>
<tr>
<td>3.10</td>
<td>Iteration 3</td>
<td>97</td>
</tr>
<tr>
<td>3.11</td>
<td>Iteration 4</td>
<td>97</td>
</tr>
<tr>
<td>3.12</td>
<td>Iteration 5</td>
<td>97</td>
</tr>
<tr>
<td>3.13</td>
<td>Iteration 6</td>
<td>98</td>
</tr>
<tr>
<td>3.14</td>
<td>Iteration 7</td>
<td>98</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.15</td>
<td>The PQMS’s CSF constructs, indicator variables and question statement</td>
<td>103</td>
</tr>
<tr>
<td>3.16</td>
<td>Characteristics of fit indices demonstrating goodness-of-fit</td>
<td>116</td>
</tr>
<tr>
<td>4.1</td>
<td>Response rate according to construction parties</td>
<td>120</td>
</tr>
<tr>
<td>4.2</td>
<td>Response rate according to working levels</td>
<td>120</td>
</tr>
<tr>
<td>4.3</td>
<td>Respondent experience in construction and QMS</td>
<td>121</td>
</tr>
<tr>
<td>4.4</td>
<td>Reliability statistics for PQMS’s CSF</td>
<td>122</td>
</tr>
<tr>
<td>4.5</td>
<td>Frequencies of agreement level of the PQMS’s CSF</td>
<td>123</td>
</tr>
<tr>
<td>4.6</td>
<td>Frequencies of usage level of the PQMS’s CSF</td>
<td>124</td>
</tr>
<tr>
<td>4.7</td>
<td>Index of the PQMS’s CSF according to the construction parties</td>
<td>126</td>
</tr>
<tr>
<td>4.8</td>
<td>Ranking of the PQMS’s CSF according to the construction parties</td>
<td>127</td>
</tr>
<tr>
<td>4.9</td>
<td>Index of the PQMS’s CSF according to parties working level</td>
<td>128</td>
</tr>
<tr>
<td>4.10</td>
<td>Ranking of the PQMS CSF according to parties working level</td>
<td>129</td>
</tr>
<tr>
<td>4.11</td>
<td>Brief profile the expert in QMS</td>
<td>130</td>
</tr>
<tr>
<td>4.12</td>
<td>Complete SSIM from expert A</td>
<td>131</td>
</tr>
<tr>
<td>4.13</td>
<td>Complete SSIM from expert B</td>
<td>131</td>
</tr>
<tr>
<td>4.14</td>
<td>Complete SSIM from expert C</td>
<td>132</td>
</tr>
<tr>
<td>4.15</td>
<td>Complete SSIM from expert D</td>
<td>132</td>
</tr>
<tr>
<td>4.16</td>
<td>Complete SSIM from expert E</td>
<td>132</td>
</tr>
<tr>
<td>4.17</td>
<td>Comparison of the expert’s opinion on the client’s commitment</td>
<td>133</td>
</tr>
<tr>
<td>4.18</td>
<td>Comparison of the expert’s opinion on the integration of quality plan</td>
<td>133</td>
</tr>
<tr>
<td>4.19</td>
<td>Comparison of the expert’s opinion on the measurement and improvement</td>
<td>133</td>
</tr>
<tr>
<td>4.20</td>
<td>Comparison of the expert’s opinion on the education and training</td>
<td>134</td>
</tr>
</tbody>
</table>
4.21 Comparison of the expert’s opinion on the teamwork and communication
4.22 The final SSIM for PQMS’s CSF
4.23 The initial reachability matrix for PQMS’s CSF
4.24 The final reachability matrix for PQMS’s CSF
4.25 Iteration 1
4.26 Iteration 2
4.27 Iteration 3
4.28 Iteration 4
4.29 Iteration 5
4.30 The CFA results summary of Cronbach’s Alpha (CA), Composite Reliability (CR) and Average Variance Extracted (AVE) for PQMS’s CSF Model A
4.31 The CFA results summary of Discriminant Validity for PQMS’s CSF Model A
4.32 The CFA results summary of Cronbach’s Alpha (CA), Composite Reliability (CR) and Average Variance Extracted (AVE) for PQMS’s CSF Model A-1
4.33 The CFA results summary of Discriminant Validity for PQMS’s CSF Model A-1
4.34 The text output for Model B
5.1 Comparison between the three sources in ranking the PQMS’s CSF
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flowchart of the research methodology</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>The quality spectrum</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>ISO 9001 process model</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Organisation quality system and plan</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>The integrated project quality plan (PQP)</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>The general graphic presentation of IDEF0 modelling tools</td>
<td>82</td>
</tr>
<tr>
<td>3.2</td>
<td>A general structural equation model demarcated into measurement and structural components</td>
<td>85</td>
</tr>
<tr>
<td>3.3</td>
<td>Example of completed driving power and dependence diagram for CSF of TQM implementation in SME industry</td>
<td>94</td>
</tr>
<tr>
<td>3.4</td>
<td>Interpretive Structural Modelling-based Model of CSF for TQM implementation in SME</td>
<td>99</td>
</tr>
<tr>
<td>3.5</td>
<td>Six stages process of SEM</td>
<td>115</td>
</tr>
<tr>
<td>4.1</td>
<td>Driving power and dependence diagram for the PQMS CSF</td>
<td>137</td>
</tr>
<tr>
<td>4.2</td>
<td>ISM-based model for PQMS’s CSF</td>
<td>141</td>
</tr>
<tr>
<td>4.3</td>
<td>The Schematic diagram for the proposed PQMS’s CSF model</td>
<td>143</td>
</tr>
<tr>
<td>4.4</td>
<td>The proposed PQMS’s CSF model (Model A)</td>
<td>143</td>
</tr>
<tr>
<td>4.5</td>
<td>The proposed PQMS’s CSF Model A fit indices</td>
<td>144</td>
</tr>
<tr>
<td>4.6</td>
<td>CFA – PQMS’s CSF Model A (The measurement model combining all constructs simultaneously)</td>
<td>146</td>
</tr>
<tr>
<td>4.7</td>
<td>CFA - PQMS CSF Model A (The factor loadings for all)</td>
<td>147</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.8</td>
<td>CFA - PQMS CSF Model A (The measurement model after deletion of items below 0.5 factor loading)</td>
<td>148</td>
</tr>
<tr>
<td>4.9</td>
<td>CFA – PQMS’s CSF Model A-1 (The measurement model after deletion of items not achieving the acceptable validity and reliability values)</td>
<td>153</td>
</tr>
<tr>
<td>4.10</td>
<td>The PQMS’s CSF Model B (Final Model)</td>
<td>156t</td>
</tr>
<tr>
<td>6.1</td>
<td>A structured CSF for implementing PQMS in construction</td>
<td>172</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOS</td>
<td>Analysis of Moment Structure</td>
</tr>
<tr>
<td>BPM</td>
<td>Business Process Management</td>
</tr>
<tr>
<td>BPR</td>
<td>Business Process Re-engineering</td>
</tr>
<tr>
<td>BSC</td>
<td>Balance Score Card</td>
</tr>
<tr>
<td>C&D</td>
<td>Construction & Demolition</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>CFEI</td>
<td>Critical Factors for Effective Implementation</td>
</tr>
<tr>
<td>CFI</td>
<td>Comparative Fit Index</td>
</tr>
<tr>
<td>CI</td>
<td>Continuous Improvement</td>
</tr>
<tr>
<td>CIDBM</td>
<td>Construction Industry Development Board Malaysia</td>
</tr>
<tr>
<td>CIQ</td>
<td>Custom, Immigration & Quarantine Complex</td>
</tr>
<tr>
<td>CPM</td>
<td>Construction Process Management</td>
</tr>
<tr>
<td>CPR</td>
<td>Construction Process Re-engineering</td>
</tr>
<tr>
<td>CQMS</td>
<td>Company Quality Management System</td>
</tr>
<tr>
<td>CR</td>
<td>Critical Ratio</td>
</tr>
<tr>
<td>CSF</td>
<td>Critical Success Factors</td>
</tr>
<tr>
<td>CSP</td>
<td>Critical Success Processes</td>
</tr>
<tr>
<td>D&B</td>
<td>Design & Build</td>
</tr>
<tr>
<td>DIY</td>
<td>Do-It-Yourself</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resources Planning</td>
</tr>
<tr>
<td>GFI</td>
<td>Goodness of Fit Indices</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Assessment and Critical Control Points</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IC</td>
<td>Intellectual Capital</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IPQMS</td>
<td>Integrated Project Quality Management System</td>
</tr>
<tr>
<td>ISM</td>
<td>Interpretive Structural Modeling</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization For Standards</td>
</tr>
<tr>
<td>KM</td>
<td>Knowledge Management</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>MHBP</td>
<td>Mass Housing Building Projects</td>
</tr>
<tr>
<td>MICMAC</td>
<td>Matrice d’Impacts Croisés Multiplication Appliquée à un Classement</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PQP</td>
<td>Project Quality Plan</td>
</tr>
<tr>
<td>PSI</td>
<td>Project Success Index</td>
</tr>
<tr>
<td>PQMS</td>
<td>Project Quality Management System</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QC</td>
<td>Quality Control</td>
</tr>
<tr>
<td>QCC</td>
<td>Quality Control Circle</td>
</tr>
<tr>
<td>QCLASSIC</td>
<td>Quality Assessment System In Construction</td>
</tr>
<tr>
<td>QMS</td>
<td>Quality Management System</td>
</tr>
<tr>
<td>R&D</td>
<td>Research & Development</td>
</tr>
<tr>
<td>RMSEA</td>
<td>Root Mean Square Error of Approximation</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Modelling</td>
</tr>
<tr>
<td>SME</td>
<td>Small and Medium Enterprise</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>SQM</td>
<td>Strategic Quality Management</td>
</tr>
<tr>
<td>SSIM</td>
<td>Structural Self-Interaction Matrix</td>
</tr>
<tr>
<td>TLI</td>
<td>Tucker-Lewis Index</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Expert Opinions on the Relationship between the Critical Success Factors (CCSF) For the ISO 9000-Based Project Quality Management System (PQMS) Implementation</td>
<td>193</td>
</tr>
<tr>
<td>B</td>
<td>Questionnaire for Critical Success Factors for ISO 9000-Based Project Quality Management System (PQMS) Implementation</td>
<td>197</td>
</tr>
<tr>
<td>C1</td>
<td>Raw Data of Online Survey - Agreement on PQMS’s CSF</td>
<td>206</td>
</tr>
<tr>
<td>C2</td>
<td>Raw Data of Online Survey - Usage of PQMS’s CSF</td>
<td>215</td>
</tr>
<tr>
<td>D1</td>
<td>Calculation of Index for Construction Parties</td>
<td>224</td>
</tr>
<tr>
<td>D2</td>
<td>Calculation of Index for Working Level</td>
<td>228</td>
</tr>
<tr>
<td>E</td>
<td>Interpretive Structural Modelling Procedure</td>
<td>232</td>
</tr>
<tr>
<td>F</td>
<td>Structural Equation Modelling Procedure</td>
<td>238</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Construction projects often undergo project delays, cost overruns and non-conformance to quality, leading to poor performance and dissatisfied parties and high operation and maintenance costs resulting from low performance of building systems (Butler, 2002; Senaratne & Sexton, 2009). By citing the findings from other researchers, Sullivan (2010) presented a concrete case that quality level of the construction industry is still poor. In response to these problems, several quality programs have emerged. One of these quality programs is Quality Management System (QMS) such as ISO 9001:2008 and Total Quality Management (TQM). QMS is defined as “all activities of the overall management function that determine the quality policy, objectives and responsibilities, and implement them by means such as quality planning, quality control, quality assurance and quality improvement within the quality system” (SIRIM, 1994).

ISO 9000 is one of the QMS subscribes by many companies and it has become a phenomena in various industries including construction. According to ISO statistic, at the end of year 2005, 776,608 companies from 161 countries are certified with ISO 9000 (Lin & Jang, 2008). Evidence has shown that by adopting ISO 9000 QMS in the construction industry, communication had been improved, mistakes rework and wastage had been minimized and better control of sub-contractors and suppliers became eminent, thus causing an increase in productivity, profit and
market share and meeting the client requirements (Bubshait & Al Atiq, 1999; Djebari & Eltigani, 1996; Douglas, Coleman, & Oddy, 2003; Motwani, Kumar, & Cheng, 1996; Pheng & Hwa, 1994; Wennerstrom, 2004).

The Circular Bil. 2/2006 issued by Construction Industry Development Board of Malaysia (CIDBM) apparently put a mandatory requirement for the Grade 7 Contractors to obtain the ISO 9001 certification before 1st January, 2009. Failure to observe the regulation will cause relegation of contractors or termination of their registration. CIDBM also had taken a positive step by introducing the Do-It-Yourself (DIY) scheme since 2000 to all contractors in order to facilitate them to be certified with the ISO 9001. The scheme helps the contractors to obtain ISO 9001 certification at an affordable cost and time because unlike the normal consultation, only one quality consultant is required to facilitate a pool of 5 to 10 contractors. Since then the number of certified contractors under the ISO 9001 has grown tremendously. In 2006, when CIDBM imposed the possession of ISO 9001 certification requirement to G7 contractors, 375 contractors were certified with ISO 9001 (CIDB, 2007). Between 2008 and 2009, another 180 contractors were certified (CIDB, 2009). The same situation was observed during the implementation of QMS by ISO 9001 certified consulting firm. The professional bodies such as Institute of Engineers Malaysia, Institutes of Surveyors Malaysia and Persatuan Akitek Malaysia are promoting the consultant firms to be certified with ISO 9001. The situation was further stimulated when Jabatan Kerja Raya, the public works department of Malaysia, the biggest client’s representative office, had obtained the ISO 9001 certification. The ripple effect was definitely natural and obvious since the consultants and the contractors too had to follow suit, otherwise their chance to become the JKR’s consultants and contractors were then jeopardised. This situation has been a trend in other countries that pioneered the ISO 9001 implementation such as in Hong Kong (Tang & Kam, 1999) and the UK (Giles, 1997; McAdam & Canning, 2001).

According to Barrett (2000) there should be two QMS implementation levels in the construction industry i.e. company-based quality management system (CQMS) and project-based quality management system (PQMS). Notwithstanding the claims that the individual construction company, who enjoyed the benefits and
advantages of being an ISO 9000 certified as highlighted previously, the main
objective of QMS implementation, namely the achievement of customer satisfaction
in the construction projects however is still at large. The previous researches showed
that the construction team faced difficulties to transfer them to the project level. An
interesting study on the effect of quality system certification and its impact at project
level had been done by Barrett and Grover (1998) in which they concluded that for
those companies that have achieved certification, the actual impact on the quality of
the service from the client’s viewpoint has been only slightly positive. Ng (2005)
also reported the dissatisfaction of client on their expected quality level contributed
by the engineering consultants in ISO 9000-based construction project. Research by
Abdullah (2005) confirmed the similar situation faced by the local construction team
in implementing quality system in a large scale construction project. As pointed by
Tam, Deng, Zeng, and Ho (2000b) “with all the quality programmes, quality appears
far better on paper than it does on site”.

There are many problems related to the PQMS implementation cited in the
literature. The main problems are the disintegration of individual parties’ quality
plan (Barrett, 2000; Sjoholt, 1995); lack of commitment (Bubshait, 1994; Carl &
Yadira, 1990; Chan & Tam, 2000; Haupt & Whiteman, 2004; Pheng & Hwa, 1994);
lack of teamwork and communication (Barrett, 2000; Pheng & Hwa, 1994; Zheng,
Li, Mo, & Yun, 2004); incapability due to inexperience and/or lack of quality skills
(Abdullah, 2005; Au & Yu, 1999; Haupt & Whiteman, 2004; Pheng & Hwa, 1994);
lack of training (Mohammed & Abdullah, 2006; Pheng & Hwa, 1994); contradict
requirements between the individual quality plan, project management and
contractual requirement (Barrett, 2000; Netto, Low, & Lo, 1997; Orwig & Brennan,
2000); lack of quality culture (Chan & Tam, 2000; Pheng & Hwa, 1994); generation
of voluminous paperwork (Bubshait & Al Atiq, 1999; Haupt & Whiteman, 2004;
Pheng & Hwa, 1994); lack of incentives for quality attainment (Au & Yu, 1999);
and misunderstanding of quality concept and terms (Abdullah, 2005; Pheng & Hwa,
1994).

One of the alternative solutions is to identify and implement the Critical
Success Factors (CSF). In fact, while studies are abound on the barriers and
solutions, benefits and costs, and perceptions of the construction team on the quality system (Abdul-Aziz, 2002; Au & Yu, 1999; Bubshait & Al Atiq, 1999; Chini & Valdez, 2003; Haupt & Whiteman, 2004; Hoonakker, Carayon, & Loushine, 2010; Huang, 2010; Lam & Tang, 2002; Lindahl & Ryd, 2007; McAdam & Canning, 2001; Nycyk, 2008; Pheng & Hwa, 1994; Pheng & Teo, 2004; Serpell & Ferrada, 2007; Shammas-Toma, Seymour, & Clark, 1998; Tang & Kam, 1999), a few research has been observed related to CSF in implementing PQMS especially on the ISO 9000-based PQMS.

1.2 Problem Statement

According to Rockart (1979) CSFs are the limited number of areas in which results, if they are satisfactory, will ensure successful competitive performance for the organization. Rockart dedicated his work for the successful performance of an organization with the main aim was to manage the information system. His seminal work has become the inspiration for CSF research in other fields and the CSF acronym has been accepted and widely used in all types of industry. The main issue that the PQMS implementation has brought little improvement only to the construction project led to the consideration of the PQMS’s CSF. The identification of CSF in construction project is important in order to limit the areas for the client and construction team to focus on the success factors.

Most of the researchers studied the success factors of TQM implementation in construction and little research was done on the ISO 9000-based PQMS. For instance, Arditi and Gunaydin (1997) recognized that the importance factors affected quality in construction corresponded to the TQM elements; Haupt and Whiteman (2004) studied success factors in transferring the TQM to the construction site; Pheng and Teo (2004) attempted to prove that the TQM could be successfully implemented in the construction industry; and Bryde and Robinson (2007) studied the application of TQM to the construction project management. Others specify the quality system in general as quality management system such as Jha and Iyer (2006) who determined the critical factors affecting the quality performance in construction.
project and Ries, Needy, Bansal, and Turan (2010) who analyzed the best practice in leadership and third party certification for QMS in construction.

Researches in ISO 9000-based PQMS success factors are scarce and centred to the single party of the construction team. For instance, Chin and Choi (2003) who determined the success factors for ISO 9000 implementation by the contractor in Hong Kong construction industry. Other research in ISO 9000-based PQMS are not truly related to the success factors such as the study on the performance of the engineering consultants in ISO 9000-based PQMS (Ng, 2005; Tang & Kam, 1999) and the effect of ISO 9000-based PQMS to the performance of the construction project (Din, Abd-Hamid, & Bryde, 2010). However, some points considered as success factors for ISO 9000-based PQMS implementation can be extracted from the articles. In fact there are many researches in implementing ISO 9000-based PQMS that have touched modestly on the several success factors. The problem of these disjointed ‘success factors’ for ISO 9000-based PQMS has resulted in confusion among construction owners in electing the most-appropriate ISO 9000-based PQMS’s CSF for their project. On one hand, it is strongly suspected that the CSF used in the project has a direct effect on the outcome of the ISO 9000-based PQMS implementation, on minimizing the problems and on achieving the benefits mentioned in the previous section. On the other hand, there has been no comprehensive study to encompass the most-appropriate ISO 9000-based PQMS’s CSF.

The previous researches also have a tendency to focus on the CSF either for single party or for single stakeholder. For instance, Chin and Choi (2003) studied the success factors for ISO 9000 implementation by the contractor and Ng (2005), and Tang and Kam (1999) studied the performance of the consultant in implementing the ISO 9000. On the other hand, other authors gathering the data related to CSF at the management level only and not the strategic and operational levels. For instance, Love, Edwards, and Sohal (2004) studied the CSF for TQM implementation in Australian contracting organizations by interviewing the managerial level namely the general managers and senior managers. Likewise Vakola and Wilson (2004) surveyed and interviewed the senior managers regarding the CSF in dealing with constant change in virtual construction organization. As highlighted by Finney and
Corbett (2007):

Since the CSF are the limited areas organization must “get right” in order to achieve success, thus it should be necessary to ask all those affected just exactly what “right” is?

(Finney & Corbett, 2007, p. 330)

PQMS implementation involves many parties and working levels. The success of the PQMS implementation does not only rely on the specific party or working level but the right recipe is the active involvement through informal relationship between all parties and working levels (Barrett, 2000). Without the consent from all stakeholders on the PQMS’s CSF, the problems such as lack of commitment, teamwork and communication, and contradict requirements between the parties’ quality plan cannot be resolved.

In reality the construction project generates voluminous reports, records and other paperwork depending on the size of the projects. In fact they are produced mainly to monitor the progress of the works and the quality in terms of compliance to the specification through the inspection and testing activities. All these are grouped under one success factor of the implementation of the PQMS only i.e. the measurement and improvement and it has been the only focus of the construction team. Whereas, other equally important CSF for any implementation of system e.g. management commitment has not been properly addressed. There must be other several factors in which, if properly implemented will ensure the successful implementation of the PQMS and address the root causes of the problems in PQMS implementation. For example, one of the problems in implementing PQMS is incapability of the construction team in handling the PQMS activities that prompting the education and training activity. However, it is seldom for the information on the indicators for education and training at the project level are collected and analysed in order to measure the training effectiveness and to introduce any improvement.

In regard to the PQMS implementation, the construction team seemed do not know what and how to begin the PQMS implementation, likewise the strategy to implement it. For example, Abdullah (2005), Jaafari (1996), and Pheng and Hwa
(1994) clearly showed that due to the failure of conducting regular training in PQMS particularly at the initial stage of the construction project created misunderstanding and misconception of quality program and the resistance to change among the construction team. Consequently they were incapable to manage the PQMS (Tang & Kam, 1999) that can be manifested from the difficulty in securing the commitment, developing the quality plan and conducting auditing for performance measurement. It is obvious that a structured and systematic PQMS’s CSF implementation should be done in order to address the sequence of priority or criticality to ensure natural acceptance, smooth and successful implementation.

The above problems suggest that rather than investing, collecting, monitoring and improving one or two less critical and even unnecessary areas, the identification of the comprehensive PQMS’s CSF should be conducted especially for ISO 9000-based PQMS. Another important aspect in considering the CSF is the ranking and criticality among the CSF. This is paramount in order to provide the construction team with a structured way or commonly described in CSF literature as a “structural relationship” (Deshmukh, 2010; Singh, 2011) in implementing the CSF for PQMS. The “structural” is defined as “relating to the arrangement of and relations between the parts or elements of a complex whole (Pearsall & Hanks, 1998)”. Structural relationship or “what factor lead to what factor” as simplified by Deshmukh (2010) and Singh (2011) can help the PQMS leader in implementing the PQMS’s CSF in sequence. As a result, the investment, focus, collecting and analysing information, monitoring and improvement can be done systematically. All these will save a lot of time and cost and provide higher quality of service, where in fact the resources could be channelled to the core business of the construction.

The above directions of the study on the PQMS’s CSF that are to prevent the problems and to ensure successful implementation of the PQMS are also supported by the previous studies on the CSF. Most of the research on CSF for the quality system irrespective of the type of the industry also focused on the identifying the CSF, ranking the level of criticality, finding the indicators for each CSF and discovering the relationship between the CSF and the performance of project or company or the parties’ involved (Ab Wahid & Corner, 2009; Achanga, Shehab, Roy, & Nelder, 2006; Ahmad, Francis, & Zairi, 2007; Baidoun, 2004; Chin & Choi,
2003; Fotopoulos & Psomas, 2010; Khanna, Sharma, & Laroiya, 2011; Kim, Kumar, & Kumar, 2011; Love, et al., 2004; Psomas, Fotopoulos, & Kafetzopoulos, 2010; Salaheldin, 2009a, 2009b; Singh, 2011; Singh, Garg, Deshmukh, & Kumar, 2007). Therefore, this research focuses on answering the following research questions:

What are the CSF for implementing ISO 9000-based PQMS?
Are there any differences in PQMS’s CSF in the viewpoints of the parties and working levels involved in the construction project?
What are the indicators of each CSF ISO 9000-based PQMS?
What is the most significant CSF for ISO 9000-based PQMS?
How are the structural relationships among the CSF for ISO 9000-based PQMS?

Again to simplify the wordings, “critical success factors for ISO 9000-based PQMS” will be shortened to “PQMS’s CSF” throughout the dissertation.

1.3 Objectives of the Research

Based on the problem statement and research questions, the aim of the research is to provide a structured and systematic approach in implementing the PQMS’s CSF. Hence, the following objectives are formulated:

(a) To identify the CSF and indicators of each CSF for ISO 9000-based PQMS;
(b) To evaluate the criticality and rank of the CSF for ISO 9000-based PQMS; and
(c) To develop the structural relationship model of the CSF for ISO 9000-based PQMS.
1.4 Scope of the Research

The construction industry is well-recognised through its various forms of contract, uniqueness in term of design, temporary team set-up and size. The quality system also contains many kinds of forms such as ISO 9001, TQM, Six-sigma and Business Process Re-engineering (BPR). The former is not so critical in the study as the PQMS’s CSF would be the same for any kind of contracts. However, the latter could affect the PQMS’s CSF as each of the QMS has its own principles and elements which will dictate the implementation. Since the local construction industry is over-whelmed with the ISO 9001-2008 (See Chapter 1 under Section 1.1 and 1.2) the scope of the study is narrowed to the ISO 9001 requirements as the basis for the identification of the PQMS’s CSF.

1.5 Research Methodology

To achieve the stated objectives, this research was carried out using the following methodologies:

(a) Literature review;
(b) Expert opinions; and
(c) Questionnaire survey.

The literature review has been actually an ongoing activity along the course of completing the dissertation. The constructs of CSF derived from the literature review were confirmed using the descriptive analysis on the data gathered from the questionnaire survey. The relationship between the CSF was manually correlated by the selected experts on a structural self-interaction matrix (SSIM). The SSIM was transformed into a model using the interpretive structural modelling (ISM) approach. This model was then validated using the structural equation modelling (SEM) technique by employing the data collected through the questionnaire survey. The interaction of these three methods is as shown in Figure 1.1 and they are briefly explained in the subsequent paragraphs.
1.5.1 Literature Review

The objective of reviewing related literature was to identify gaps in CSF researches implementing quality system in the construction industry. Abstracts of vast amounts of articles related to success factors regardless of the types of industry and level of implementation are skimmed accordingly. Successive rounds of abstract reviews have resulted in only fifty three articles which were considered related to CSF for quality system and construction. The subsequent analysis of all the articles identified the significant gap and the methods used by the researchers in identifying the CSF. The gap was the absence of the CSF study for the ISO 9000-based PQMS. Since articles directly related to CSF for ISO 9000-based PQMS were considered non-existence, another round of literature search for articles that contain the element of “success factors” for implementing quality system in construction was conducted. The aim then was to identify the CSF and indicators of each CSF for ISO 9000-based PQMS. Another set of articles was compiled. The final list of CSF at this phase was the constructs of the CSF for ISO 9000-based PQMS that was used in the field studies. Strategies in collecting and analysing the data appropriate to the CSF study were also gained through the analysis of the articles.

1.5.2 Experts’ Opinions

The experts’ opinions were sought for two circumstances. Firstly they were used for validating the constructs of the CSF for ISO 9000-based PQMS. Secondly their opinions were sought to establish the contextual structural relationships between the CSF by determining which factor “leads to” which factor and which do not have any relationship at all. All these opinions are shown in the SSIM and converted into a structural relationships model using ISM technique. Through the structural relationships the level of criticality of each CSF is determined and using the driving power and dependence diagram, the CSF is distinguished either as driver, autonomous, linkage or dependent. The structural model developed using ISM is then validated with the structural model developed using SEM.
1.5.3 Questionnaire Survey

The construct of CSF and its indicators were converted into questions form. To fine-tuning the survey questions the experts’ opinions were sought. The final questionnaires (see Appendix ‘A’) were sent to the main construction parties i.e. the client representative, consultants and contractors. A likert scale was used to measure the level of the respondent’s agreement and usage of each PQMS CSF. Several analysis techniques were used such as frequency, ranking, spearmen’s rank correlation and analysis of variances of Kruskal-Wallis. The aim was to get the industry to verify the PQMS CSF and to confirm the relationships model developed earlier using interpretive structural modelling (ISM). The confirmation was done by analysing the PQMS’s CSF structural relationships using the structural equation modelling (SEM).

The methodology for this research is shown in a flowchart diagram in Figure 1.1.
Figure 1.1: Flowchart of the research methodology

- Start
- Literature review – Constructs of CSF and indicators for PQMS
 - Develop Structural Self-Interaction Matrix (SSIM) based on the experts’ opinions
 - Develop Interpretive Structural Modelling (ISM) based on the SSIM
 - Conduct questionnaire survey
 - Analyse surveyed data
 - Develop structural relationship model using SEM based on the surveyed data
 - Discuss and conclude the results
- End
1.6 Significance of the Research

The significance of the research should discuss the importance of the research and its relevance to the theory, practice and future research. Thus the significances of this research can be seen in four aspects:

(a) The result contributes to the academic world in term of the compilation of CSF for ISO 9000-based PQMS. New area of research in understanding the relationships among the factors as well as between the factors is introduced;

(b) The results of the investigative study on the CSF for ISO 9000-based PQMS will prove useful to the project team especially for the project that implement PQMS in ISO 9000 environment;

(c) Results from this study can be used as guidelines to the local project team in performing the CSF on other future large-scale projects. Project managers can also use this study to evaluate their current project and compare the perceived and real success factors for knowledge management exercises; and

(d) The structural relationship model of the CSF for ISO 9000-based PQMS presents a comprehensive structural cause and effect relationship among various success factors to the top management of the project team in deciding the priority, direction and implementation strategy for the PQMS.

1.7 Organisation of the Thesis

This thesis is divided into six chapters i.e.:

Chapter 1 introduces the overall picture of the research such as the research background, problem statement, research objectives, scope of the research, research methodology, significance of the research and the organisation of the thesis.

Chapter 2 identifies the constructs of the CSF for ISO 9000-based PQMS. It also describes the indicators for each CSF. The forty articles reviewed are presented in a tabular form in order to identify the CSF and the frequency of each CSF cited in the articles. Subsequently, the concepts and descriptions of each CSF are scrutinised
Chapter 3 describes the research methods employed for the study and provides weight for the potential of the research to be conducted successfully. A number of data collections and analysis are discussed and finally appropriate research methods in conjunction with the conditions and environments surrounding the research are selected. The modelling techniques used to develop the structural relationship model i.e. ISM and SEM are also discussed in this chapter.

Chapter 4 reports the outcome of the statistical analysis of the data collected from the questionnaires and the experts’ opinions exercise. The analysis is carried out on the respondent demographic study; respondents’ agreement and usage of CSF; and the difference of perception among the project team i.e. client representative, consultant and contractor. The development of the structural relationship model using the ISM is presented systematically. The SEM techniques in confirming the ISM structural relationship model is also shown in detail.

Chapter 5 highlights the discussion on the findings from the analysis of the questionnaires and expert opinions in answering the objectives of the research i.e. to identify the CSF and indicators of each CSF for ISO 9000-based PQMS; to evaluate the relationships between the CSF for ISO 9000-based PQMS; and to develop the relationship model of the CSF for ISO 9000-based PQMS.

Chapter 6 highlights the main conclusions and several limitations of the research. Several points for further investigation are also highlighted.

Chan, A. P. C., & Tam, C. M. (2000). Factors Affecting the Quality of Building Projects in Hong Kong. [Case study]. *International Journal of Quality &
Reliability Management, 17(4/5), 423-442.

Texas at Austin Construction Industry.

Journal of Civil Engineering and Management, 16(1), 65-73.

Psomas, E. L., Fotopoulos, C. V., & Kafetzopoulos, D. P. (2010). Critical Factors...
for Effective Implementation of Iso 9001 in Sme Service Companies.

Sypsomos, M. G. (1997). Beyond Project Controls–the Quality Improvement

