Universiti Teknologi Malaysia Institutional Repository

Numerical simulation of welding residual stress distribution on T-joint fillet structure

Viswanathan, Kodakkal Kannan and Se, Yun Hwang and Jang, Hyun Lee and Sung, Chan Kim (2012) Numerical simulation of welding residual stress distribution on T-joint fillet structure. International Journal of Ocean System Engineering, 2 (2). pp. 82-91. ISSN 2233-6478

Full text not available from this repository.

Official URL: http://koreascience.or.kr/article/ArticleFullRecor...

Abstract

Fillet welding is widely used in the assembly of ships and offshore structures. The T-joint configuration is fre-quently reported to experience fatigue damage when a marine structure meets extreme loads such as storm loads. Fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guides have required that the fatigue strength assessment procedure of seagoing structures under wave-induced random loading and storm loading be compensated based on the effect of residual stresses. We propose a computational procedure to analyze the residual stresses in a T-joint. Residual stresses are measured by the X-ray diffraction (XRD) method, and a 3-D finite element analysis (FEA) is performed to obtain the residual stress pro-file in the T-joint. The proposed finite element model is validated by comparing experiments with computational results, and the characteristics of the residual stresses in the T-joint are discussed.

Item Type:Article
Uncontrolled Keywords:Welding, Residual stress, FEA, XRD, T-joint, Storm load
Subjects:Q Science
Divisions:Science
ID Code:31108
Deposited By: Fazli Masari
Deposited On:18 Jun 2014 12:16
Last Modified:14 Oct 2018 15:23

Repository Staff Only: item control page