COMMAND SHAPING CONTROL OF A CRANE SYSTEM

KING SHYANG SIEN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Mechatronics and Automation Control)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

NOVEMBER 2006
Dedicated to my beloved family
ACKNOWLEDGEMENT

Firstly, I would like to take this opportunity to express my sincere gratitude to my supervisor, Dr. Zaharuddin Mohamed, for his valuable guidance and advice throughout the development of this project.

I also wish to thank to my friends and all the personal, whose have directly or indirectly played a part in the completion of this project.

Last but not least, I would like to thank my beloved family who gave me the moral support and encouragement.
ABSTRACT

Cranes are widely used for transportation of heavy material in factories, warehouse, shipping yards, building construction and nuclear facilities. There are 3 major types of crane system: gantry (overhead) crane, rotary (tower) crane and boom crane. This project will concentrate in controlling of gantry crane. First of all, the equations of motion of the gantry crane system are derived by using Lagrangian approach. Then, the model of the gantry crane system is developed to represent the dynamic equations of motion in state space. SIMULINK is used to simulate the dynamic behaviours of the gantry crane. From the simulation, we noticed that the motion of the payload and trolley are unstable with occurrence of the oscillation. The system became undamped system when the input force is taken off. The system will swing on its varying frequencies in this condition. The challenge of this project is to develop a control algorithm for gantry crane system to reduce the oscillation or vibration of the payload and hook. Input shaping command controller is introduced in this project to control the crane system. Input shaping command controller is a feed-forward controller. This project had studied the performance of this designed controller in the crane system. With this controller the gantry crane system is able to transfer the load from point to point as fast as possible and, at the same time, the load swing is kept small during the transfer process and completely vanishes at the load destination.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Project Objective</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Project Scope</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Methodology</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Thesis Outline</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Type Of Crane</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Gantry Crane</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Tower Crane</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Boom Crane</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Details About Gantry Crane</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Literature Review Of the Crane Controller</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Open Loop Techniques</td>
<td>10</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Closed Loop Techniques</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Command Shaping Control</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>SYSTEM MODELING</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Gantry Crane Model Description</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>Dynamic Equation Derivation</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>Linearization Of The System</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>State Space Representation Of The System</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>DYNAMIC BEHAVIORS SIMULATION AND DISCUSSION</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Differential Equation Editor (DEE)</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Dynamic Behaviours Simulation of Gantry Crane</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Dynamic Behaviours Simulation Results</td>
<td>26</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Sway Motion of Gantry Crane</td>
<td>27</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Trolley Position</td>
<td>29</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Sway Angle</td>
<td>30</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Natural Frequency</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>System Analysis and Discussion</td>
<td>32</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Input Force, F</td>
<td>32</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Length of The Hoisting Rope,l</td>
<td>35</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Trolley Mass, M</td>
<td>37</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Payload Mass, m</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>INPUT SHAPING CONTROLLER DESIGN AND SIMULATION</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>Input Shaping Technique</td>
<td>42</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Zero Residual Vibration Constraints</td>
<td>44</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Robustness constraints</td>
<td>45</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Unity Magnitude Summation Constraints</td>
<td>46</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Time Optimality Constraints</td>
<td>47</td>
</tr>
<tr>
<td>5.2</td>
<td>Input Shapers Simulation</td>
<td>47</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Zero-Vibration Shaper (ZV)</td>
<td>48</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Zero-Vibration-Derivative Shaper (ZVD)</td>
<td>51</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Zero-Vibration-Derivative-Derivative Shaper (ZVDD)</td>
<td>53</td>
</tr>
<tr>
<td>5.3</td>
<td>Simulation Results Analysis and Discussion</td>
<td>56</td>
</tr>
</tbody>
</table>
5.3.1 ZV Shaper 57
5.3.2 ZVD Shaper 58
5.3.3 ZVDD Shaper 60
5.4 Summary 61

6 NON LINEAR SYSTEM 64
6.1 Non-Linear System’s Equation 64
6.2 Simulation of Non-Linear System 66
6.3 Simulation Result Analysis and Discussion 68
6.4 Summary 68

7 CONCLUSION AND FUTURE WORK 69
7.1 Conclusion 69
7.2 Future Work 71

REFERENCES 72
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Comparison of Trolley Position and Sway Angle</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>With different System Parameter Setting</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Amplitudes and Time Locations of ZV Shaper</td>
<td>49</td>
</tr>
<tr>
<td>5.2</td>
<td>Amplitudes and Time Locations of ZVD Shaper</td>
<td>52</td>
</tr>
<tr>
<td>5.3</td>
<td>Amplitudes and Time Locations of ZVDD Shaper</td>
<td>54</td>
</tr>
<tr>
<td>5.4</td>
<td>Performance Comparison Among Input Shapers</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Gantry Crane</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Rotary or Tower Crane</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Boom Crane</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustration of A Gantry Crane</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Block Diagram of Input Shaping Command Technique</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Model of Gantry Crane</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Block Diagram of the Dynamic of Gantry Crane System</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Bang-bang Input Force by Step Response</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Bang-bang Input Force by Pulse Generator</td>
<td>25</td>
</tr>
<tr>
<td>4.4</td>
<td>DEE for Gantry Crane System</td>
<td>26</td>
</tr>
<tr>
<td>4.5</td>
<td>Sway Motion when Input Force is Positive</td>
<td>27</td>
</tr>
<tr>
<td>4.6</td>
<td>Sway Motion when Input Force is Negative</td>
<td>27</td>
</tr>
<tr>
<td>4.7</td>
<td>Bang-bang Input Force, 1N</td>
<td>28</td>
</tr>
<tr>
<td>4.8</td>
<td>Trolley Position (m)</td>
<td>29</td>
</tr>
<tr>
<td>4.9</td>
<td>Sway Angle (rad)</td>
<td>30</td>
</tr>
<tr>
<td>4.10</td>
<td>Bang-bang Input Force at 1N, 0.5N and 5N.</td>
<td>32</td>
</tr>
<tr>
<td>4.11</td>
<td>Trolley Position and Sway Angle With Different Input Force, F</td>
<td>33</td>
</tr>
<tr>
<td>4.12</td>
<td>Trolley Position and Sway Angle With Different Length of Hoisting Rope,l</td>
<td>35</td>
</tr>
<tr>
<td>4.13</td>
<td>Trolley Position and Sway Angle With Different Trolley Mass, M</td>
<td>37</td>
</tr>
<tr>
<td>4.14</td>
<td>Trolley Position and Sway Angle With Different Payload Mass, m</td>
<td>39</td>
</tr>
<tr>
<td>5.1</td>
<td>Generic Input Shaping Process</td>
<td>43</td>
</tr>
<tr>
<td>5.2</td>
<td>ZV Shaper</td>
<td>49</td>
</tr>
<tr>
<td>5.3</td>
<td>Convolution With ZV Shaper</td>
<td>50</td>
</tr>
</tbody>
</table>
5.4 Block Diagram of ZV shaper
5.5 ZVD Shaper
5.6 Convolution With ZVD Shaper
5.7 Block Diagram of ZVD shaper
5.8 ZVDD Shaper
5.9 Convolution With ZVDD Shaper
5.10 Block Diagram of ZVDD shaper
5.11 Block Diagram for Gantry Crane Simulation
5.12 Response of Trolley Position with ZV Shaper
5.13 Response of Sway Angle with ZV Shaper
5.14 Response of Trolley Position with ZVD Shaper
5.15 Response of Sway Angle with ZVD Shaper
5.16 Response of Trolley Position with ZVDD Shaper
5.17 Response of Sway Angle with ZVDD Shaper
5.18 Trolley Position Response Comparison
5.19 Sway Angle Response Comparison
6.1 DEE for Non-Linear Gantry Crane System
6.2 Block Diagram of ZVDD shaper
6.3 Block Diagram for Non-Linear Gantry Crane Simulation
6.4 Simulation Result of Non-Linear System With ZVDD Shaper
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_x</td>
<td>Input force (N)</td>
</tr>
<tr>
<td>l</td>
<td>Length of hoisting rope (m)</td>
</tr>
<tr>
<td>M</td>
<td>Trolley mass (kg)</td>
</tr>
<tr>
<td>m</td>
<td>Payload mass (kg)</td>
</tr>
<tr>
<td>G</td>
<td>Centre point</td>
</tr>
<tr>
<td>S</td>
<td>Point of suspension</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration (9.81 m/s2)</td>
</tr>
<tr>
<td>r_m</td>
<td>Position vector of centre point, G</td>
</tr>
<tr>
<td>r_o</td>
<td>Position vector of point of suspension, S</td>
</tr>
<tr>
<td>x_m</td>
<td>Horizontal position of the payload</td>
</tr>
<tr>
<td>y_m</td>
<td>Vertical position of the payload</td>
</tr>
<tr>
<td>x</td>
<td>Trolley position (m)</td>
</tr>
<tr>
<td>\dot{x}</td>
<td>Trolley velocity (m/s)</td>
</tr>
<tr>
<td>\ddot{x}</td>
<td>Trolley acceleration (m/s2)</td>
</tr>
<tr>
<td>θ</td>
<td>Sway angle (rad)</td>
</tr>
<tr>
<td>$\dot{\theta}$</td>
<td>Sway angle velocity (rad/s)</td>
</tr>
<tr>
<td>$\ddot{\theta}$</td>
<td>Sway angle acceleration (rad/ s2)</td>
</tr>
<tr>
<td>T</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>P</td>
<td>Potential energy</td>
</tr>
<tr>
<td>ω_n</td>
<td>Natural frequency</td>
</tr>
<tr>
<td>ζ</td>
<td>Damping ratio</td>
</tr>
<tr>
<td>A</td>
<td>Impulse’s amplitude</td>
</tr>
<tr>
<td>t_0</td>
<td>Time of impulse</td>
</tr>
<tr>
<td>t_N</td>
<td>Time of last impulse</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

DEE - Differential Equation Editor
ZV - Zero-Vibration
ZVD - Zero-Vibration-Derivative
ZVDD - Zero-Vibration-Derivative-Derivative
PD - Proportional-Derivative
CHAPTER 1

INTRODUCTION

1.1 Introduction

Cranes are widely used for transportation of heavy material in factories, warehouse, shipping yards, building construction and nuclear facilities. In order to lift heavy payloads in factories, in building construction, on ships and etc, cranes usually have very strong structures.

Crane system is tends to be highly flexible in nature, generally responding to commanded motion with oscillations of the payload and hook. The response of this system to external disturbances such as wind is also oscillatory in nature. The swaying phenomenon introduce not only reduce the efficiency of the crane, but also cause safety problem in the complicated working environment.

Previously, all the cranes were manually operated. But manual operation became difficult when cranes became larger, faster and higher. Due to this, efficient controllers are applied into the cranes system to guarantee fast turn over time and to meet safety requirement.
1.2 Project Objective

There are two main objectives for this project. The first objective is to investigate the dynamic behaviour of the gantry crane system. The mathematical model of a gantry crane is obtained by Lagrangian technique. Then, MATLAB and SIMULINK are used to simulate the sway angle and trolley position of the crane system. By observing the motions of the gantry crane system, the dynamic behaviours are studied.

The second objective of this project is to develop an effective control algorithm for the crane system to reduce the oscillation or vibration of the payload and hook. Command shaping control technique is the target controller that will be studied in this project. This designed controller should be able to transfer the load from point to point as fast as possible and, at the same time, the load swing is kept small during the transfer process and completely vanishes at the load destination.

1.3 Project Scope

The scopes of this project are:

- The project topic understanding.
- Search for the relevant material.
- Study and analysis of the mathematical model of the gantry crane system.
- Simulate and investigate the dynamic performance of the gantry crane system.
- Study and understand the concept of an effective control algorithm for the gantry crane system.
- Design and develop the proposed controller mathematically.
Implement the designed controller by MATLAB.
Simulate the dynamic performance of the gantry crane system after the designed controller was implemented.
Performance analysis.
Project report write-up.

1.4 Methodology

- Gantry crane system literature review.
- Understand the mathematical model developed.
- Study the performance of the response of the gantry crane system.
- Develop effective control algorithms.
- Investigate the performance of the controllers.
- Improve the performance of the developed controllers.

1.5 Thesis Outline

This report can be divided into seven chapters. Chapter 1 is the introduction of the project objective, scope, methodology and the report outline.

Next some information about crane system and also an overview of the literature that has been published in relation to crane control will be covered in Chapter 2.

In Chapter 3 the mathematical model of a gantry crane system will be derived.
The system model will be represented in state space for analysis. Following chapter will describe how the MATLAB and SIMULINK are used to simulate the dynamic behaviors of the gantry crane. The discussion on the simulation results will be described in this chapter as well.

The development and design of the input shaping controller to reduce the vibration of the gantry crane will be included in Chapter 5. This chapter will include the discussion on the performance of the designed controller based on SIMULINK simulation result.

Non-linear gantry crane system will be studied in this project. Chapter 6 will describe the non-linear gantry crane system and its simulation results.

The last chapter, we will conclude the works done in this project and will include the suggestion for improvement.
REFERENCES

