Steelwork design guide to BS5950-1:2000

Synopsis:

This book takes into account the revisions of the code of practice of steel structures by enhancing the previous BS 5950:1990 with the updated code of BS 5950:2000 Part 1. The specification or code changes have affected the design of the members in steel structures. Most of the text and worked examples relate to the most commonly encountered design situations have been addressed in this book. Therefore, the procedures for design at the cross–sectional member and frame level for various situations are explained in great details. This book needs to be read together with BS 5950:2000 Part 1 so that the details of the explanations on the use of code can be understood clearly. Although this book has been prepared to integrate the use of BS 5950:2000 Part 1, the basic principle of analysis and design described in this book can also be applied to other code of practice such as Euro–code 3.
Table Of Content:

Foreword

CHAPTER 1 INTRODUCTION
Advantages and Disadvantages of Using Steel
Structural Steel Design
Limit States Concepts in Design
Partial Safety Factors
Design Strength
Design Procedure
Design Code: BS 5950–1:2000
Loading
Load Combinations
Load Distribution
Structural Steel Elements
The Properties of Steel
Design Strength
Other Properties of Steel
Steel Section

CHAPTER 2 LOCAL BUCKLING AND SECTION CLASSIFICATION
Introduction
Section Classification
CHAPTER 3 DESIGN OF RESTRAINED BEAMS

Introduction
Restraint Conditions
Design Criteria
Shear Capacity
Moment Capacity
Web Bearing or Crushing
Stiff Bearing Length
Bearing Capacity of an Unstiffened Web
Web Buckling
Buckling Capacity of an Unstiffened Web
Deflection
PROBLEMS

CHAPTER 4 DESIGN OF UNRESTRAINED BEAMS

Introduction

Design Considerations

Design Procedures of an Unrestrained Beam

Determination of Equivalent Slenderness \(?L_T \)

Determination Effective Length \(L_E \) and Equivalent Segment Length \(L_{LT} \)

Equivalent Uniform Moment \(m_{LT} \)

Design Flowchart of an Unrestrained Beam

Work Example for Unrestrained Beam

Simple Beam without Intermediate Restraint with 3 Point Loads

Beam with Intermediate Lateral Restraint at Mind Span

Beam with No Intermediate Lateral Restraint with One Point Load at Mid Span

Beam with Two Intermediate Lateral Restraint

Problems

CHAPTER 5 DESIGN OF COLUMNS

Introduction

Euler’s Column Theory

Segment Length

Effective Length of a Column

Compressive Strength, \(p_c \)

Compression Resistance

Design of Axially Loaded Column

Example 1: Axially Loaded Column with Pinned End
Example 2: Axially Loaded Column with Fixed End
Example 3: Axially Loaded Column with Pinned End and Restrained at Minor Axis
Example 4: Axially Loaded Column UB Section with Pinned End and Restrained at Minor Beam-Column
Column in Simple Structures
Example 5: Continuous Column in Simple Structures (CI. 4.7.7)
Column with Moment
Problems

CHAPTER 6 DESIGN OF TRUSSES AND LATTICE GIRDER
Introduction
Terminology of Trusses
Typical Member Sections
Loading
Analysis of Truss
Primary Forces
Secondary Stresses
Purlins and Truss Members
Design of Purlins
Design of Truss Members
Design of Tension Members
Design of Compression Members
Problems

CHAPTER 7 CONNECTIONS
Introduction
Bolting
Bolt Spacing
Edge and End Distances
Capacity of Plate or Connected Part
Shear Capacity
Bearing Capacity
Tension Capacity (CL 6.3.4.2)
Bracket
Bracket Subjects to In-Plane Moment
Welding
Weld Strength
Rules in Weld Design
Simple Design
Worked Example for Weld Subject to Axial Load
Worked Example for Lapped Joint (In–Plane Moment)
Worked Example (In-plane Moment)(2 Flanges and 3 Welded Lines)
Worked Example for Face Joint (Out–of–Plane Moment)
Worked Example for Connection Combined Welding and Bolting (Flexible End Plate)
Problems

CHAPTER 8 PORTAL FRAME
Introduction
Types of Portal Frame
Analysis
Stability
Connection