The aim of this book is to provide students and practicing engineers with a guide of structural steel design to meet the requirement of BS 5950:Part 1: 2000 Structural Use of Steelwork in Building. The emphasis has been to illustrate the clauses in the code rather than to match practical cases exactly. The first part of the book gives basic design concepts of structural elements comprising beam, column, connection, roof truss, and plate girder. In the second part, it presents worked examples of design of structural steel elements which are of commonly used in building frame structures. The examples have different design problem, which require different approach of loading analysis and design formula.
Solution to problems in structural steel design to BS 5950:Part 1: 2000

Table Of Content:

Figures
Table
Foreword by Vice Chancellor
Foreword by President
Preface

PART 1 NOTES ON STRUCTURAL STEEL DESIGN

CHAPTER 1 INTRODUCTION
Design Method
Structural Steel Sections
Material Properties
Design Strength
Structural Loadings
Section Classification

CHAPTER 2 BEAM
Distribution of Loads from Slabs to Beams
Restraining Conditions of Beams
Design Checks

CHAPTER 3 COLUMN
Modes of Failure of Column
Section Classification
Effective Length
Analysis and Design of Building Frame Structure
Design of Column Subjected to Axial Load Only (Clause 4.7.4)
Design of Column Subjected to Load at Nominal Eccentricity – Simple Construction (Clause 4.7.7)
Design of Column Subjected to Top Axial Load and Moment (Clause 4.8.3)

CHAPTER 4 DESIGN OF CONNECTION
Introduction
Bolted Connection
Spacing of Bolts
Mode of Failure
Bolt Capacity
Eccentric Connection
Welded Connection
Effective Length of Fillet Weld
Eccentric Connection

CHAPTER 5 TRUSS
Loading and Analysis
Design of Purlins
Design of Tension Members
Design of Compression Members
Slenderness of Angle and Channel Sections (Clause 4.7.2)
Determination of Segment Length LVV, LAA and LBB
CHAPTER 6 PLATE GIRDER

Design of Plate Girder
Minimum Requirement of Web and Flange
Shear Capacity
Moment Capacity
End Anchorage
Design of Web Stiffeners

PART II PROBLEM EXAMPLES

CHAPTER 7 DESIGN OF BEAM

Problem 1.1 Simply Supported Beam with Full Restraint
Problem 1.2 Simply Supported Beam without Lateral Restraint
Problem 1.3 Simply Supported Beam with Lateral Restraint at Points Along the Span
Problem 1.4 Beam with Cantilever Span without Lateral Restraint
Problem 1.5 Beam with End Moment

CHAPTER 8 DESIGN OF COLUMN

Problem 2.1 Axially Loaded Column
Problem 2.2 Axially Loaded Column with Tie Beam at Mid-height
Problem 2.3 Axially Loaded Column with Unsymmetrical Loading
Problem 2.4 Columns in Simple Construction Design
Problem 2.5 Column in Rigid Construction Design

CHAPTER 9 DESIGN OF CONNECTION
Problem 3.1 Bolted and Welded Connections Subjected to Direct Shear
Problem 3.2 Bolted Connection Subjected In–plane Rotation
Problem 3.3 Welded Connection Subjected to In–plane Rotation
Problem 3.4 Welded Connection Subjected to Out–of–plane Rotation
Problem 3.5 Bolted Connection Subjected to Out–of–plane Rotation
Problem 3.6 End Plate Connection
Problem 3.7 Welded Connection Subjected to In–plane Rotation
Problem 3.8 Welded Connection with Unsymmetrical Weld
Problem 3.9 Double Angle Web Cleat Connection
Problem 3.10 Fin Plate Connection

CHAPTER 10 DESIGN OF TRUSS
Problem 4.1 Cantilever Roof Truss with Rectangular Section Members and Purlins
Problem 4.2 Roof Truss with Purlins on the Top Nodes
Problem 4.3 Design of Purlins Using Channel Section
Problem 4.4 Roof Truss with Purlins on the Top Rafter
Problem 4.5 Truss with Tension Members Subjected to Coexistent Axial Force and Bending Moment
Problem 4.6 Calculation of Members Forces in a Roof Truss Subjected to Wind Load

CHAPTER 11 DESIGN OF PLATE GIRDER
Problem 5.1 Check of Design Capacity of Plate Girder
Problem 5.2 Design of Plate Girder