DESIGN OF MICROWAVE BANDPASS FILTER WITH NOVEL
PARALLEL COUPLED GROOVED MICROSTRIP STRUCTURE

JAYASEELAN MARIMUTHU

UNIVERSITI TEKNOLOGI MALAYSIA
DESIGN OF MICROWAVE BANDPASS FILTER WITH NOVEL PARALLEL COUPLED GROOVED MICROSTRIP STRUCTURE

JAYASEELAN MARIMUTHU

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical – Electronics & Telecommunications)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

OCTOBER 2004
Dedicated to My Beloved Father Marimuthu Perumal

Called to the loving arms of our Lord Siva on 7th October 1994
ACKNOWLEDGEMENTS

My first thanks is for my supervisor, Associate Professor Dr. Mazlina Esa, whose constant support, patience and unbounded enthusiasm were of invaluable help. Her devotion to the needs of students and the encouragements has working with her a true delight. Thanks for helping me to kick start and finish this valuable research.

A special thanks to my wife Santhye Subramaniam for her consistent encouragement and concern over time that made the journey enjoyable and meaningful. Without her unwavering sacrifice, support, love and devotion, this achievement would not have progressed as far as it did.

My sincere thanks to Usman Ullah Sheikh and Anoop Sehgal who have constantly been there for me all the time and extended full support to me. Warmest regards to my mother, sisters, brother and in laws for their seamless caring encouragement and moral support that has made this journey possible.
ABSTRACT

The research consists of two parts. The first part is the derivation of the design equations for parallel coupled bandpass filter whilst the second part is the modification of the structure to improve the 2nd harmonic rejection. Physical dimension equations by Sina Akhtarzad, Thomas R. Rowbotham and Peter B. Johns [18], 1975 were modified to calculate the strip width-to-substrate thickness and like gap-to-substrate thickness ratios from desired values of the even and odd modes characteristic impedances. The modified equations were taken from [12] and [20]. The improved set of equations has accuracy of less than 1.5% and 4% for the even and odd mode characteristic impedances, respectively, compared to [17]. Each length of the coupled region is calculated by using the modified equation of [22]. The designed filter has accuracy of less than 1.64 % and 0.18% for the return and insertion losses, respectively, compared to the design from [17]. Conventional parallel coupled bandpass filter showed very high 2nd harmonic signal at twice the center frequency and asymmetrical response at the upper and lower stop bands. To improve the 2nd harmonic rejection and asymmetrical response at the upper and lower stop bands a modified structure of parallel coupled bandpass filter is proposed. The modified structure is very simple since it does not require recalculation of the physical dimension but showed very good improvement of the 2nd harmonic rejection. The modification was carried out by introducing consecutive square grooves in the arm of the coupled resonator of parallel coupled bandpass filter. The square grooves were placed at equal distance from each other where this ranges from 1 groove up to 7 grooves. The second harmonic present of the in the parallel coupled bandpass filter is due to the different phase velocity experienced by the even and odd modes. For the odd mode, the propagation on in the inner part of the parallel coupled line travels at high phase velocity compared to the even mode which travels at the outer part. By placing the square grooves at the inner part of the parallel coupled, this equalizes the electrical length for the odd and even modes. Hence, the rejection of 2nd harmonic and the improvement in the asymmetrical response were also achieved. The maximum rejection of -100dB for the 2nd harmonic and 30% improvement of the upper cut off frequency have been achieved.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxxi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxxii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1

1.1 Background 1
1.2 Problem Statement 2
1.3 Proposed Design 4
1.4 Characteristic of Improved Design 5
1.5 Parallel–Coupled–Line Filter Design Specification 7
1.6 Objectives 7
1.7 Scopes 8
1.8 Overview on the Thesis Organization 8
CHAPTER 2 LITERATURE REVIEW

2.1 Microwave Filters

2.2 Implementation of Bandpass Filter
 2.2.1 End Coupled Microstrip Bandpass Filters
 2.2.2 Interdigital Bandpass Filters
 2.2.3 Parallel Coupled Microstrip Bandpass Filter

2.3 Design of Coupled Line Bandpass Filters

2.4 Modified Design of Parallel Coupled Bandpass Filter

2.5 Summary

CHAPTER 3 PARALLEL COUPLED BANDPASS FILTER DESIGN METHODOLOGY

3.1 Filter Response and Prototype Element
 3.1.1 Butterworth Response
 3.1.2 Chebyshev Response
 3.1.3 Calculated Filter Order, Prototype Element Value, Admittance Inverter and Z_{oe} and Z_{oo} for Butterworth Response
 3.1.4 Calculated Filter Order, Prototype Element Value, Admittance Inverter and Z_{oe} and Z_{oo} for Chebyshev Response

3.2 Parallel Coupled Microstrip Filter Physical Dimension
 3.2.1 Physical Dimension Equations by Thomas G. Bryant & Jerald A. Weiss [17], 1968
 3.2.2 Physical Dimension Equations by Sina Akhtarzad, Thomas R. Rowbotham and Peter B. Johns [18], 1975
 3.2.3 Physical Dimension Equations by Ramesh
3.2.4 Physical Dimension Equations by E. Hammerstad and O. Jensen [21], 1980 48
3.2.5 Physical Dimension Equations by Manfred Kirschning and Rolf H. Jansen [22], 1984 53
3.2.6 Physical Length of Coupled Region 56
3.2.7 Physical Dimension for Single Microstrip 50 Ω 58
3.3 Comparison of Zoe and Zoo from Analysis Equations of [17], [18], [19], [21] and [22] 59
3.4 Comparison of Filters Response without and with end - effect correction for length of couple region 64
3.5 Comparison of Filter Design and Response for Various Design Equation 69
3.6 Physical Design Parameters for Parallel Coupled BPF 76

CHAPTER 4 RESULTS AND DISCUSSION 81

4.1 Introduction 81
4.2 Design of Butterworth Response Parallel Coupled BPF 82
4.3 Design of Chebyshev Response Parallel Coupled BPF 88
4.4 Modification on Parallel Coupled BPF 94
4.4.1 Modification on Butterworth Response Parallel Coupled BPF 96
4.4.1.1 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW with Grooves

\[n = 0, 1, 2, 3, 4, 5, 6, & 7. \] 96
4.4.1.2 Filter Response for the 4th Order Butterworth BPF Centered at 2.5 GHz
4.4.1.3 Filter Response for the 5th Order
Butterworth BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 106

4.4.1.4 Filter Response for the 6th Order
Butterworth BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 111

4.4.1.5 Filter Response for the 7th Order
Butterworth BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 116

4.4.1.6 Filter Response for the 8th Order
Butterworth BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 121

4.4.1.7 Filter Response for the 9th Order
Butterworth BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 126

4.4.2 Modification on Chebyshev Response
Parallel Coupled BPF 132

4.4.2.1 Filter Response for the 3rd Order
Chebyshev BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 132

4.4.2.2 Filter Response for the 4th Order
Chebyshev BPF Centered at 2.5 GHz
with a 10% FBW with Grooves
\(n = 0, 1, 2, 3, 4, 5, 6, \& 7 \). 137

4.4.2.3 Filter Response for the 5th Order
Chebyshev BPF Centered at 2.5 GHz
with a 10% FBW with Grooves

\[n = 0, 1, 2, 3, 4, 5, 6, & 7. \]

4.4.2.4 Filter Response for the 6th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW with Grooves

\[n = 0, 1, 2, 3, 4, 5, 6, & 7. \]

4.5 Overall Discussion

CHAPTER 5 IMPROVED DESIGN OF PARALLEL COUPLED BPF

5.1 Introduction

5.2 Improved Design For Butterworth Response

5.3 Improved Design For Chebyshev Response

CHAPTER 6 CONCLUSION

6.1 Conclusion

6.2 Further Recommendations

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 30$dB. Lowpass Prototype Values g_n, Admittance Inverter Constants J_n, and even and odd mode characteristic impedance Z_{oe} (Ω), Z_{oo} (Ω)</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>4th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 45$dB. Output table</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>5th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 65$dB.</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>6th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 75$dB.</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>7th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 95$dB.</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>8th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 105$dB.</td>
<td>35</td>
</tr>
<tr>
<td>3.7</td>
<td>9th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 125$dB.</td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>3rd Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 30$dB. Lowpass Prototype Values g_n, Admittance Inverter Constants J_n, and even and odd mode characteristic impedance Z_{oe} (Ω), Z_{oo} (Ω)</td>
<td>36</td>
</tr>
<tr>
<td>3.9</td>
<td>4th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and</td>
<td></td>
</tr>
</tbody>
</table>
3.10 5th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 70$dB.

3.11 6th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 85$dB.

3.12 7th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 105$dB.

3.13 8th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 125$dB.

3.14 9th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW, with Passband Maximum Insertion Loss $R_p = 3.0$dB and Insertion Loss at 1.9GHz $IL = 150$dB.

3.15 The Calculated Value of Z_{oe} and Z_{oo} for Various $u = w/h$ at $g = s/h = 0.2$ for substrate dielectric constant $\varepsilon_r = 10.0$.

3.16 Accuracy of the Z_{oe} and Z_{oo} from [18], [19], [21] and [22] Compare with [17].

3.17 Physical Parameter for the 3rd Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

3.18 Physical Parameter for the 4th Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

3.19 Physical Parameter for the 5th Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

3.20 Physical Parameter for the 6th Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

3.21 Physical Parameter for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on Bryant & Weiss [17] $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

3.22 Physical Parameter for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on S. Akhtarzad [18]
3.23 Physical Parameter for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on R. Garg & Bahl [19]

\[w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \]

3.24 Physical Parameter for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on E. Hammerstad [21]

\[w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \]

3.25 Physical Parameter for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on M. Kirschning [22]

\[w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \]

3.26 Comparison Table for \(S_{11} \) and \(S_{21} \) of 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based Design parameters from [17], [18], [19], [21] and [22].

3.27 Accuracy of the \(S_{11} \) and \(S_{21} \) for Filter Response of Filter which Design from [18], [19], [21] and [22] Compare with [17].

3.28 Physical Parameter for the 7th Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.29 Physical Parameter for the 8th Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.30 Physical Parameter for the 9th Order Butterworth Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.31 Physical Parameter for the 3rd Order Chebyshev Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.32 Physical Parameter for the 4th Order Chebyshev Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.33 Physical Parameter for the 5th Order Chebyshev Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.34 Physical Parameter for the 6th Order Chebyshev Response BPF Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm of the input and output ports} \ (Z_o = 50\Omega) \)

3.35 Physical Parameter for the 7th Order Chebyshev Response BPF
Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm} \), \(l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

3.36 Physical Parameter for the 8th Order Chebyshev Response BPF
Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm} \), \(l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

3.37 Physical Parameter for the 9th Order Chebyshev Response BPF
Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm} \), \(l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.1 Comparison of \(S_{21} \) dB at Various Frequencies for 3rd Order, 4th Order, 5th Order, 6th Order, 7th Order, 8th Order and 9th Order Butterworth Response Parallel Coupled Bandpass Filter

4.2 Comparison of \(S_{21} \) dB at Various Frequencies for 3rd Order, 4th Order, 5th Order, 6th Order, 7th Order, 8th Order and 9th Order Chebyshev Response Parallel Coupled Bandpass Filter

4.3 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 3rd Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.4 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 4th Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.5 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 5th Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.6 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 6th Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.7 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 7th Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.8 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 8th Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.9 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 9th Order Butterworth Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)

4.10 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \), Bandwidth \(BW \) for Modified 3rd Order Chebyshev Response BPF with Grooves \(n = 0, 1, 2, 3, 4, 5, 6. \& 7 \)
4.11 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 4th Order Chebyshev Response BPF with Grooves $n = 0, 1, 2, 3, 4, 5, 6.$ & 7

4.12 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 5th Order Chebyshev Response BPF with Grooves $n = 0, 1, 2, 3, 4, 5, 6.$ & 7

4.13 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 6th Order Chebyshev Response BPF with Grooves $n = 0, 1, 2, 3, 4, 5, 6.$ & 7

5.1 The Design Specification for Improved Parallel Coupled Bandpass filter 2.5 GHz and with 10 % FBW.

5.2 Physical Parameter for the 6th Order Butterworth Response BPF Centered at 2.75 GHz with a 12.5% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

5.3 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 6th Order Butterworth Response BPF with Grooves $n = 0, 7$

5.4 Physical Parameter for the 6th Order Butterworth Response BPF Centered at 2.75 GHz with a 15% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

5.5 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 6th Order Butterworth Response BPF with Grooves $n = 0, 7$

5.6 Physical Parameter for the 7th Order Butterworth Response BPF Centered at 2.75 GHz with a 15% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

5.7 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 6th Order Butterworth Response BPF with Grooves $n = 0, 7$

5.8 Comparison of S_{21} dB at Various Frequencies for Various Design Specifications for Improved Design Butterworth Response Parallel Coupled Bandpass Filter

5.9 Physical Parameter for the 5th Order Chebyshev Response BPF Centered at 2.75 GHz with a 12.5% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

5.10 Comparison of S_{21} dB at 2nd Harmonic, Center Frequency f_c, Bandwidth BW for Modified 5th Order Chebyshev Response BPF with
5.11 Physical Parameter for the 6th Order Chebyshev Response BPF
Centered at 2.75 GHz with a 12.5% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \)
of the input and output ports \((Z_o = 50\Omega) \)

5.12 Comparison of \(S_{21} \) dB at 2nd Harmonic, Center Frequency \(f_c \) Bandwidth
BW for Modified 6th Order Chebyshev Response BPF with
Grooves n = 0, 6

5.13 Comparison of \(S_{21} \) dB at Various Frequencies for Various Design
Specifications for Improved Design Chebyshev Response Parallel
Coupled Bandpass Filter
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Conventional 6<sup>th</sup> Order Butterworth Parallel – Coupled Line Bandpass Filter</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>The Response of Conventional 6<sup>th</sup> Order Butterworth Parallel – Coupled Line Bandpass</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Non – Modified Conventional Parallel – Coupled Line Bandpass Filter.</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Modified Conventional Parallel – Coupled Line Bandpass.</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Current Distribution of the Odd – And Even – Modes of a Pair of Symmetric Coupled Microstrip [11].</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Cross section view of the microstrip coupled line</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>End Coupled Microstrip Band – Pass Filter</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Interdigital Band – Pass Filter</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Parallel Coupled Band – Pass Filter</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Field Distribution of Coupled Lines</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>A Two – Port Coupled Line Section Having a Band pass Filter</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Equivalent Circuit of the Coupled Line Section of Figure 2.5.</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Layout of an N+1 Section Coupled Line Bandpass Filter</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Using equivalent Circuit of Figure 2.6 for Each Coupled Line Section.</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Equivalent Circuit for Transmission Lines of Length 2θ.</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Equivalent Circuit of the Admittance Inverters</td>
<td>20</td>
</tr>
</tbody>
</table>
2.11 Using Results of Figure 2.9 and Figure 2.10 for the $N = 2$ Case.

2.12 Lumped – Element Circuit for a bandpass filter for $N = 2$

2.13 Modified Filter Obtained by Applying Five Square Grooves at 3rd Order Butterworth Response Conventional Parallel Coupled Bandpass Filter

2.14 Modified $\lambda_{gc}/4$ line in 2.5 GHz Filter

3.1 Physical Dimension of the 3rd Order Parallel Coupled Bandpass Filter.

3.2 Decomposition of Total Capacitance of Coupled Microstripline in terms of Various Capacitances. (a) Even – Mode Capacitances. (b) Odd – Mode Capacitances

3.3 Comparison of Z_{oe} and Z_{oo} for Various Analysis Equations respect to w/h at $s/h = 0.2$ for substrate dielectric constant $\varepsilon_r = 10.0$. 60

3.4 Shows the behavior of Z_{oe} and Z_{oo} with respect to $u = w/h$ for (a) $\varepsilon_r = 10.2$ and (b) $\varepsilon_r = 1.0$ for $g = s/h = 0.5$ and 1.0. Calculated by using the Equations in section 3.2.2. 62

3.5 Shows the behavior of Z_{oe} and Z_{oo} with respect to $g = s/h$ for (a) $\varepsilon_r = 10.2$ and (b) $\varepsilon_r = 1.0$ for $u = u/h = 0.5$ and 1.0. Calculated by using the Equations in section 3.2.2. 62

3.6 The Design of 3rd Order Butterworth Response Parallel coupled BPF, without end-effect correction for length of couple region.

3.7 The Design of 3rd Order Butterworth Response Parallel coupled BPF, with end-effect correction for length of couple region.

3.8 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW without & with end effect correction

3.9 Filter Response for the 4th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW without & with end effect correction

3.10 Filter Response for the 5th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW without & with end effect correction

3.11 Filter Response for the 6th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW without & with end effect correction

3.12 The Design of 3rd Order Butterworth Response Parallel coupled BPF, based on [17].

3.13 Filter Response for the 3rd Order Butterworth BPF Centered at
2.5 GHz with a 10% FBW based on [17].

3.14 The Design of 3rd Order Butterworth Response Parallel coupled BPF, based on [18].

3.15 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on [18].

3.16 The Design of 3rd Order Butterworth Response Parallel coupled BPF, based on [19].

3.17 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on [19].

3.18 The Design of 3rd Order Butterworth Response Parallel coupled BPF, based on [21].

3.19 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on [21].

3.20 The Design of 3rd Order Butterworth Response Parallel coupled BPF, based on [22].

3.21 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW based on [22].

3.22 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW by Various Physical Dimensions Equation Based on [17], [18], [19], [21] & [22]

4.1 The Design of 3rd Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

4.2 Filter Response for the 3rd Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.

4.3 The Design of 4th Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

4.4 Filter Response for the 4th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.

4.5 The Design of 5th Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, $w = 1.1925$ mm, $l = 10$ mm of the input and output ports ($Z_o = 50\Omega$)

4.6 Filter Response for the 5th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.
4.7 The Design of 6th Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.8 Filter Response for the 6th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.

4.9 The Design of 7th Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.10 Filter Response for the 7th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.

4.11 The Design of 8th Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.12 Filter Response for the 8th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.

4.13 The Design of 9th Order Butterworth Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.14 Filter Response for the 9th Order Butterworth BPF Centered at 2.5 GHz with a 10% FBW.

4.15 The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.16 Filter Response for the 3rd Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.

4.17 The Design of 4th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.18 Filter Response for the 4th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.

4.19 The Design of 5th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, \ l = 10 \text{ mm} \) of the input and output ports (\(Z_o = 50\Omega \))

4.20 Filter Response for the 5th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.
4.21 The Design of 6th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports} \left(Z_0 = 50\Omega \right) \)

4.22 Filter Response for the 6th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.

4.23 The Design of 7th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports} \left(Z_0 = 50\Omega \right) \)

4.24 Filter Response for the 7th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.

4.25 The Design of 8th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports} \left(Z_0 = 50\Omega \right) \)

4.26 Filter Response for the 8th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.

4.27 The Design of 9th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.5 GHz with a 10% FBW, \(w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports} \left(Z_0 = 50\Omega \right) \)

4.28 Filter Response for the 9th Order Chebyshev BPF Centered at 2.5 GHz with a 10% FBW.

4.29 Parallel – Coupled – Line Filter Design with Grooves \(n = 1, 2, 3, 4, 5, 6 \) and 7. The Grooves are square grooves placed at equal distance from each other and from the both end of the microstrip.

4.30 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with \(n = 1 \) groove. (b) Response of Filter in the Figure (a).

4.31 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with \(n = 2 \) grooves. (b) Response of Filter in the Figure (a).

4.32 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with \(n = 3 \) grooves. (b) Response of Filter in the Figure (a).

4.33 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with \(n = 4 \) grooves. (b) Response of Filter in the Figure (a).

4.34 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with \(n = 5 \) grooves. (b) Response of Filter in the Figure (a).

4.35 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with \(n = 6 \) grooves. (b) Response of Filter in the Figure (a).
4.36 (a) The Design of 3rd Order Butterworth Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.37 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.38 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.39 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.40 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.41 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.42 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.43 (a) The Design of 4th Order Butterworth Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.44 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.45 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.46 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.47 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.48 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.49 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.50 (a) The Design of 5th Order Butterworth Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.51 (a) The Design of 6th Order Butterworth Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.52 (a) The Design of 6th Order Butterworth Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).
4.53 (a) The Design of 6th Order Butterworth Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.54 (a) The Design of 6th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.55 (a) The Design of 6th Order Butterworth Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.56 (a) The Design of 6th Order Butterworth Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.57 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.58 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.59 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.60 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.61 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.62 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.63 (a) The Design of 7th Order Butterworth Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.64 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.65 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.66 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.67 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.68 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.69 (a) The Design of 8th Order Butterworth Response Parallel Coupled
BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.70 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.71 (a) The Design of 8th Order Butterworth Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.72 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.73 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.74 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.75 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.76 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.77 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.78 (a) The Design of 9th Order Butterworth Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.79 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.80 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.81 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.82 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.83 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.84 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.85 (a) The Design of 3rd Order Chebyshev Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).
4.86 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.87 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.88 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.89 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.90 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.91 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.92 (a) The Design of 4th Order Chebyshev Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.93 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.94 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.95 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).

4.96 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 4 grooves. (b) Response of Filter in the Figure (a).

4.97 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 5 grooves. (b) Response of Filter in the Figure (a).

4.98 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 6 grooves. (b) Response of Filter in the Figure (a).

4.99 (a) The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with n = 7 grooves. (b) Response of Filter in the Figure (a).

4.100 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with n = 1 groove. (b) Response of Filter in the Figure (a).

4.101 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with n = 2 grooves. (b) Response of Filter in the Figure (a).

4.102 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with n = 3 grooves. (b) Response of Filter in the Figure (a).
4.103 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with \(n = 4 \) grooves. (b) Response of Filter in the Figure (a).

4.104 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with \(n = 5 \) grooves. (b) Response of Filter in the Figure (a).

4.105 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with \(n = 6 \) grooves. (b) Response of Filter in the Figure (a).

4.106 (a) The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with \(n = 7 \) grooves. (b) Response of Filter in the Figure (a).

5.1 The Design of 6th Order Butterworth Response Parallel Coupled BPF, Centered at 2.75 GHz with a 12.5% FBW, \(w = 1.1925 \) mm, \(l = 10 \) mm of the input and output ports (\(Z_o = 50\Omega \))

5.2 Filter Response for the 6th Order Butterworth BPF Centered at 2.75 GHz with a 12.5% FBW.

5.3 The Design of 6th Order Butterworth Response Parallel Coupled BPF, with \(n = 7 \) grooves. Centered at 2.75 GHz with a 12.5% FBW, \(w = 1.1925 \) mm, \(l = 10 \) mm of the input and output ports (\(Z_o = 50\Omega \))

5.4 Filter Response for the 6th Order Butterworth BPF with \(n = 7 \) grooves. Centered at 2.75 GHz with a 12.5% FBW.

5.5 The Design of 6th Order Butterworth Response Parallel Coupled BPF, Centered at 2.75 GHz with a 15% FBW, \(w = 1.1925 \) mm, \(l = 10 \) mm of the input and output ports (\(Z_o = 50\Omega \))

5.6 Filter Response for the 6th Order Butterworth BPF Centered at 2.75 GHz with a 15% FBW.

5.7 The Design of 6th Order Butterworth Response Parallel Coupled BPF, with \(n = 7 \) grooves. Centered at 2.75 GHz with a 15% FBW, \(w = 1.1925 \) mm, \(l = 10 \) mm of the input and output ports (\(Z_o = 50\Omega \))

5.8 Filter Response for the 6th Order Butterworth BPF with \(n = 7 \) grooves. Centered at 2.75 GHz with a 15% FBW.

5.9 The Design of 7th Order Butterworth Response Parallel Coupled BPF, Centered at 2.75 GHz with a 15% FBW, \(w = 1.1925 \) mm, \(l = 10 \) mm of the input and output ports (\(Z_o = 50\Omega \))

5.10 Filter Response for the 7th Order Butterworth BPF Centered at 2.75 GHz with a 15% FBW.

5.11 The Design of 7th Order Butterworth Response Parallel Coupled BPF, with \(n = 7 \) grooves. Centered at 2.75 GHz with a 15% FBW,
$w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports } (Z_o = 50\Omega)$

5.12 Filter Response for the 7th Order Butterworth BPF with $n = 7$ grooves. Centered at 2.75 GHz with a 15% FBW.

5.13 Comparison of Filter Response before and after Optimization Butterworth Response

5.14 The Design of 5th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.75 GHz with a 12.5% FBW, $w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports } (Z_o = 50\Omega)$

5.15 Filter Response for the 5th Order Chebyshev BPF Centered at 2.75 GHz with a 12.5% FBW.

5.16 The Design of 5th Order Chebyshev Response Parallel Coupled BPF, with $n = 6$ grooves. Centered at 2.75 GHz with a 12.5% FBW, $w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports } (Z_o = 50\Omega)$

5.17 Filter Response for the 5th Order Chebyshev BPF with $n = 6$ grooves. Centered at 2.75 GHz with a 12.5% FBW.

5.18 The Design of 6th Order Chebyshev Response Parallel Coupled BPF, Centered at 2.75 GHz with a 12.5% FBW, $w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports } (Z_o = 50\Omega)$

5.19 Filter Response for the 6th Order Chebyshev BPF Centered at 2.75 GHz with a 12.5% FBW.

5.20 The Design of 6th Order Chebyshev Response Parallel Coupled BPF, with $n = 6$ grooves. Centered at 2.75 GHz with a 12.5% FBW, $w = 1.1925 \text{ mm}, l = 10 \text{ mm of the input and output ports } (Z_o = 50\Omega)$

5.21 Filter Response for the 6th Order Chebyshev BPF with $n = 6$ grooves. Centered at 2.75 GHz with a 12.5% FBW.

5.22 Comparison of Filter Response before and after Optimization Chebyshev Response
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>MathCAD File: Butterworth Response BPF Based on Filter Specification Calculated Filter Order, Lowpass Prototype Element, Admittance Inverter, Z_{oe} & Z_{oo}</td>
<td>180</td>
</tr>
<tr>
<td>Appendix B</td>
<td>MathCAD File: Butterworth Response BPF Based on Filter Specification Calculated Filter Order, Lowpass Prototype Element, Admittance Inverter, Z_{oe} & Z_{oo}</td>
<td>187</td>
</tr>
<tr>
<td>Appendix C</td>
<td>MathCAD File: Singlestrip Line w & l Calculation Input & Output Port Parallel Coupled Bandpass Filter</td>
<td>195</td>
</tr>
<tr>
<td>Appendix D</td>
<td>MathCAD File: S. Akhtarzad [18], [12] & [20] Modified Equation Z_{oe} & Z_{oo} in term w/h (fixed s/h)</td>
<td>197</td>
</tr>
<tr>
<td>Appendix E</td>
<td>MathCAD File: S. Akhtarzad [18], [12] & [20] Modified Equation Z_{oe} & Z_{oo} in term g/h (fixed w/h)</td>
<td>199</td>
</tr>
<tr>
<td>Appendix F</td>
<td>MathCAD File: Ramesh Garg [17] Modified Equation Z_{oe} & Z_{oo} in term w/h (fixed s/h)</td>
<td>201</td>
</tr>
<tr>
<td>Appendix G</td>
<td>MathCAD File: E. Hammerstad [21] Modified Equation Z_{oe} & Z_{oo} in term w/h (fixed s/h)</td>
<td>206</td>
</tr>
<tr>
<td>Appendix H</td>
<td>MathCAD File: M. Kirschning [22] Modified Equation Z_{oe} & Z_{oo} in term w/h (fixed s/h)</td>
<td>210</td>
</tr>
<tr>
<td>Appendix I</td>
<td>MathCAD File: S. Akhtarzad [18], [12] & [20] Modified Equation w/h & g/h in term Z_{oe} & Z_{oo} ($\varepsilon_r>6$) Length of the Coupled Region l [22]</td>
<td>214</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

BPF - Bandpass Filter
FBW - Full Band Width at f_c
TEM - Transverse Electromagnetic
O.C - Open Circuit
LIST OF SYMBOLS

\(\beta \) - Phase Constant
\(\beta_e \) - Phase Constant of Even Mode
\(\beta_o \) - Phase Constant of Odd Mode
\(\varepsilon_{\text{eff}} \) - Effective Dielectric Coefficient
\(\varepsilon_{\text{effn}} \) - Average Effective Dielectric Constant for Even and Odd Mode
\(\varepsilon_{\text{even}} \) - Effective Dielectric Constant for Even Mode
\(\varepsilon_0 \) - Permeability of Free Space
\(\varepsilon_{\text{odd}} \) - Effective Dielectric Constant for Odd Mode
\(\varepsilon_r \) - Dielectric Constant of the Substrate
\(\lambda \) - Wavelength Length
\(\lambda_{\text{even}} \) - Wavelength of Even Mode
\(\lambda_g \) - Wavelength of Guided Wave
\(\lambda_{\text{gc}} \) - Wavelength at Design Frequency
\(\lambda_{\text{gm}} \) - Midband Wavelength
\(\lambda_{\text{odd}} \) - Wavelength of Odd Mode
\(\theta \) - Length of the Line of the filter matched to \(Z_0 \)
\(\theta_c \) - Electrical Length of the \(c \)-mode
\(\theta_\pi \) - Electrical Length of the \(\pi \)-mode
\(\eta_0 \) - Intrinsic Impedance of the Free Space 120\(\pi \) \(\Omega \)
\(\omega \) - Angular Frequency
\(\omega_c \) - Angular Frequency at Center Frequency \(f_c \)
\(\omega_1 \) - First Cutoff Angular Frequency at Center Frequency \(f_1 \)
\(\omega_2 \) - Second Cutoff Angular Frequency at Center Frequency \(f_2 \)
\(\Delta \omega \) - Small Changes in Angular Frequency
\(a_b \) - Ripple Factor Butterworth Response Filter
\(a_c \) - Ripple Factor Chebyshev Response Filter

\(c \) - Speed of Light

\(C \) - Equivalent Capacitor for given \(Z_o \) and \(\omega_b \)

\(C_e \) - Total Even Mode Capacitances with Dielectric Coefficient \(\varepsilon_r \)

\(C'_e \) - Total Even Mode Capacitances Air as Dielectric \(\varepsilon_r = 1.0 \)

\(C_f \) - Fringing Capacitance of a Microstrip of Width \(w/h \) at Outer Part

\(C'f \) - Fringing Capacitance of a Microstrip of Width \(w/h \) at Inner Part

\(C_{ga} \) - Capacitance in Odd Mode for Fringing Field across the Gap, in Air Region.

\(C_{gd} \) - Capacitance in Odd Mode for Fringing Field across the Gap, in Dielectric.

\(C'_n \) - Equivalent Capacitor for given \(Z_o, \omega_b \) and \(g_n \)

\(C_o \) - Total Odd Mode Capacitances with Dielectric Coefficient \(\varepsilon_r \)

\(C'_o \) - Total Odd Mode Capacitances Air as Dielectric \(\varepsilon_r = 1.0 \)

\(C_p \) - Capacitance between Parallel – Plate with Substrate Dielectric Coefficient \(\varepsilon_r \)

\(D \) - Beat Wavelength of the Perturbation

\(F \) - Fractional Bandwidth of the Filter

\(f_1 \) - First cut off Frequency of the Filter at 2.375 GHz

\(f_2 \) - Second cut off Frequency of the Filter at 2.625 GHz

\(f_c \) - Center Frequency of the Filter at 2.5 GHz

\(g \) - \(s/h \), Gap to Height Ratio for Parallel Coupled Microstrip Line

\(g_n \) - Prototype Lumped – Element Low – Pass Filter

\(h \) - Height / Thickness of the Dielectric Substrate

\(IL \) - Insertion Loss at \(f=1.9 \) GHz

\(I_n \) - Current at Port 1

\(J \) - Admittance Inverter

\(j \) - Complex Number Notation \((\sqrt{-1})\)

\(J_{z1, \text{even}} \) - Current Distribution of the Even Modes at 1\text{st} Microstrip

\(J_{z2, \text{even}} \) - Current Distribution of the Even Modes at 2\text{nd} Microstrip

\(J_{z1, \text{odd}} \) - Current Distribution of the Odd Modes at 1\text{st} Microstrip

\(J_{z2, \text{odd}} \) - Current Distribution of the Odd Modes at 2\text{nd} Microstrip

\(K_{mn} \) - Coupling Coefficient between Two Parallel Microstrip in Interdigital Filter

\(L \) - Equivalent Inductor for given \(Z_o \) and \(\omega_b \)

\(l \) - Length of the Coupled Region / Length of the Microstrip Line

\(l_c \) - Path Length of the \(c \)-mode
\(l_{\text{corrected}} \) - Corrected Length of the Coupled Region
\(l_e \) - Length Due to End Effect
\(l_\pi \) - Path Length of the \(\pi \)-mode
\(L'_\alpha \) - Equivalent Inductor for given \(Z_o \), \(\alpha \), and \(g_n \)
\(n \) - Filter Order / Number of Grooves
\(R_{pb} \) - Passband Maximum Insertion Loss Butterworth Response Filter
\(R_{pc} \) - Passband Ripple Chebyshev Response Filter
\(s \) - Gap between Two Parallel Microstrip Lines
\(S_{11} \) - \(S \) parameter for port 1 to port 1 (Reflection Coefficient at Port 1)
\(S_{21} \) - \(S \) parameter for port 1 to port 2 (Transmission Coefficient Port 1-Port 2)
\(S_{mn} \) - Gap between Two Parallel Microstrip in Interdigital Filter
\(s/h \) - Gap to Substrate Height Ratio for Parallel Coupled Microstrip Lines
\(t \) - Thickness of the Conductor on Top of Dielectric
\(u \) - \(w/h \) Width to Substrate Height Ratio for Parallel Coupled Microstrip Line
\(v_{\text{even}} \) - Velocity of Even Mode
\(v_{\text{odd}} \) - Velocity of Odd Mode
\(v_p \) - Phase Velocity of the Wave
\(w_o \) - Width of the input and output port
\(w \) - Width of the Single Microstrip
\(w/h \) - Width over Height Ratio for Parallel Coupled Microstrip Lines
\((w/h)_{se} \) - Width over Height Ratio for Single Microstrip Line corresponding to \(Z_{se} \)
\((w/h)_{so} \) - Width over Height Ratio for Single Microstrip Line corresponding to \(Z_{so} \)
\((w/h)' \) - \(w/h \) included effect of strip thickness
\(Y \) - Admittance seen at the Input of the Filter
\(Z_L \) - Load Impedance
\(Z_{mn} \) - Impedance of T-Circuit
\(Z_o \) - Characteristic Impedance of Single Microstrip Line / Transmission Line
\(Z_{oe} \) - Even Mode Characteristic Impedance for Parallel Coupled BPF
\(Z_{oo} \) - Odd Mode Characteristic Impedance for Parallel Coupled BPF
\(Z_{se} \) - Equivalent to Single – Line Characteristic Impedance for Even Mode
\(Z_{so} \) - Equivalent to Single – Line Characteristic Impedance for Odd Mode
CHAPTER 1

INTRODUCTION

1.1. Background

Filters are essential in the RF front end of microwave wireless communication system. In planar microstrip and stripline realization, one of the most common implementation methods for bandpass and bandstop filters with required bandwidths up to a 40% of central frequency is to use a cascade of parallel - coupled sections [1], [2].

The synthesis procedure which consists of the design equation for the coupled line physical parameters (space-gap between parallel lines, line widths and lengths) is easy and can be found in any classical microwave books. Based on this, a well-defined systematic procedure, for the required parallel coupled microstrip – filter physical parameters can be easily derived for both Butterworth and Chebyshev response of any order. The filter can be fabricated easily and it exhibits reasonably good performance compared with other planar circuit filters [1].

Although parallel coupled bandpass microstrip – filter is very popular and simple to implement as shown Figure 1.1, the traditional design does suffer from a fundamental limitation, namely, the presence of spurious response at twice the basic passbands at the design frequency as shown Figure 1.2.
1.2. Problem Statement

One of the disadvantages is that the first spurious passband of this type of filter appears at twice the basic passband frequency as shown in Figure 1.2. Therefore, the rejection of the upper stopband is worse than that of the lower stopband. For example, if coupled – line filter is used at the next stage of frequency converter, harmonic signals originated from frequency converter still exist. This causes response asymmetry in the upper and lower stop bands. Hence, this greatly limits its applications and degrades system performance.
This is resulted from the inequality of even and odd mode phase velocities of coupled lines in each stage. This problem becomes severe if inverted microstrip and suspended-substrate stripline are used, since these two media exhibit considerably greater difference in mode velocities [3].

Another disadvantage of the parallel-coupled filter is that the filter response shows steeper roll-off on the lower frequency side than on the higher frequency side as seen in Figure 1.2. This is the so-called frequency response asymmetry. The asymmetry is apparent when looking at the response of the passband group delay. The frequency response symmetry is also important in applications involving pulsed signals.

To reject these harmonics, it is usually necessary to cascade additional low pass filters that can reject the spurious passbands. This solution, however, increases the filter layout area and introduces additional insertion losses. Hence, it is necessary to obtain a design technology that can reduce size and reject a harmonic signal.

Many works [3] - [6] have been proposed to tackle this problem. They fall into two categories [4]:

(i) providing different lengths for even and odd modes,
(ii) equalizing the modal phase velocities.

It is found that connecting a short uncoupled line section at either end of the coupled section improves filter characteristics, if section lengths are chosen correctly [3]. An over coupled resonator is proposed to extend phase length for the odd mode to compensate difference in the phase velocities. Subsections with a coupled three-line microstrip are inevitable at both ends of each coupled section in the filter [4].

The capacity compensated structures are also effective in suppressing the spurious passband at $2f_c$. It should be noted that the loading capacitor are subject to
the electrical parameters of each coupled section [5], [6]. Recently, combinations
different stripline-stepped impedance resonators (SIR) with specified coupling angles
can suppress the spurious response [7].

The gap size and the line width for the input/output-coupled resonators are
reduced to improve the rejection at $2f_c$ [8]. Coupled wiggly microstrip lines also
show an effective suppression on the spurious passband. The strip-width perturbation
does not require the filter parameters to be recalculated, and the classical design
methodology for coupled-line microstrip filters can still be used [9].

Based on [9], a modified structure is proposed by applying the general ideas
of the above – mentioned and Bragg condition to microstrip line to improve
harmonic suppression characteristics [10].

1.3. Proposed Design

The modified structure proposed is shown in Figure 1.4; using conventional
parallel coupled – line bandpass filters, bragg and non - bragg condition to coupled
section of microstrip line to improve harmonic suppression and frequency response
symmetry for lower cut off and upper cut off frequency characteristics without
recalculating the physical dimension of the design.

The proposed design was chosen because of the simplicity and well known
design methodology. Well established design equations are available and equations
are simple for physical design parameter. The modification does not require
recalculation of design parameters such as space – gap between parallel lines, line
widths and lengths as shown in Figures 1.3 and 1.4. The structure is also easy to be
fabricated.
1.4. Characteristic of Improved Design

In any pair of symmetric coupled microstrip lines, as shown in Figure 1.3, the odd mode propagates faster than the even mode along the pair, i.e., phase constant for the odd mode is less than the phase constant of the even mode $\beta_o < \beta_e$. To modify the propagation velocity of even and odd mode, a symmetric coupled section with identical physical dimension should be modified for identical electrical lengths by the traveling path for the odd mode should be extended or for even mode should be reduced. For symmetric coupled microstrips lines, the typical current distributions of the odd and even modes are shown in Figure 1.5. It shows that the electromagnetic energy for the odd mode concentrates around the center gap, while for the even mode, it concentrates around the outer metallic edges.

![Figure 1.3: Non-Modified Conventional Parallel – Coupled Line Bandpass Filter.](image1)

![Figure 1.4: Modified Conventional Parallel – Coupled Line Bandpass.](image2)
The possible and simplest way to extend the electrical path for the odd mode, and at same time to increase that for the even mode to a minim extent, is to modify the flat coupled lines to corrugated coupled lines by introducing square grooves at periodical order as shown in Figure 1.4.

Due to the modification, the symmetric coupled microstrip lines no longer symmetric with respect to the propagation direction. The even and odd modes of symmetric coupled lines are perturbed and turn into \(c\) – mode and \(\pi\) – mode, respectively. Most of the energy of the \(\pi\) – mode will travel along the central wiggle coupling slot will experience periodical changes in propagation direction, while that of the \(c\) – mode along the straight outer metallic edges does not experience any changes in propagation direction. Based on that, the total electrical lengths of these two eigen – modes in a coupled section can be equalized, i.e., \(\theta_c = \theta_\pi\), since the path length \(l_c > l_\pi\) and phase constant \(\beta_c > \beta_\pi\).
1.5. **Parallel – Coupled – Line Filter Design Specification**

The design parameters chosen are 3\(^{rd}\) to 9\(^{th}\) order Butterworth and Chebyshev response bandpass filters centered at \(f_c = 2.5\) GHz with 10 % fractional bandwidth, substrate dielectric constant is \(\varepsilon_r = 10.2\) Figure 1.6 shows substrate thickness \(h = 1.27\) mm and metal layer thickness \(t = 0.017\) mm.

![Figure 1.6: Cross section view of the microstrip coupled line.](image)

The design parameters are chosen for two different responses at various orders to prove the applicability of the modified filter regardless of filter response type and order of the filter.

1.6. **Objectives**

The main goal of this research is to design, simulate and analyze modified structures of conventional parallel – coupled bandpass filter without recalculating the physical dimension, which improve the performance of filter, by minimizing spurious response at harmonic \((2f_c)\) (improving the suppression performance of 2\(^{nd}\) harmonic signal) and frequency response symmetry for lower cut off and upper cut off frequency characteristics.
1.7. Scopes

The scope of this project is divided into several parts; the first part is to identify the design equations for conventional parallel – coupled – line bandpass filter. Based on the design equations, MathCAD files are developed to calculate the physical parameters for conventional parallel – coupled – line bandpass filter. The filter responses based on the various design equations are compared and analyzed.

The second part is based on the chosen design equation in the first part, design conventional parallel – coupled – line bandpass filter for Butterworth and Chebyshev responses for the 3rd to 9th Order. The designs are simulated using Sonnet release 9 and analyzed.

The third part, is the improvement of the filter performance by modifying the conventional parallel – coupled bandpass filter structure by introducing number of grooves from 1 to 7 in all the design above, simulate the designs. The structures are simulated and analyzed.

A comparison study was carried out for the modified and non – modified structures for the parallel coupled bandpass filter from the second and third part. Finally based on the modified structures, optimized filter is determined which as minimum harmonic response and fulfilled the design specifications.

1.8. Overview on the Thesis Organization

Chapter 1 provides a first glimpse at the basic aspects of the research undertaken; introduction, problem statement, proposed design, characteristics of the improved design, parallel – coupled – line filter design specification, objectives as well as the scopes of the research.
Chapter 2 gives an overview of the fundamentals of parallel coupled bandpass filter design equations in terms of filter specifications. It also shows how a parallel coupled can be used for the filter design, based on the given specification how to obtain the Z_{oc} and Z_{oo} from lowpass filter prototype elements. Various methods utilized to reduce the second harmonic are investigated and comments are given.

Chapter 3 shows the detail studies of various types of design equations and modifications on the design equations. Careful and detail studies were carried out on chapter to obtain a right design equation. Finally an appropriate design equation was achieved and used for further design of the parallel coupled bandpass filter. Filter design parameters are presented for various orders and responses for parallel coupled bandpass filter center frequency 2.5 GHz with operation bandwidth of 10%.

In chapter 4, results and discussion are presented. Based on the design equation from chapter 3, the design modification was introduced on the parallel coupled bandpass filter and simulated. The complete results are given for non modified and modified filters.

From the results and discussion of chapter 4, further modification has been done on the filter design parameter to achieve the actual design specification proposed in this research. The modification is carried out for various orders and responses. Finally, the results are presented and discussed.

Chapter 6 concludes the thesis followed by recommendations for future work.