A RELIABILITY ANALYSIS OF A MALAYSIA JACKET PLATFORM

DORIS CHIN CHONG LENG

A thesis is submitted in fulfillment of the requirement for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

DECEMBER 2005
Dedicated to my beloved family and Bernard for their unfailing support…
ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor, Associate Prof. Dr Iberahin Jusoh for his precious continuous guidance, support and encouragement throughout my study. His ideas, suggestions and comments have given me the courage to handle this study and formed a valuable part of this thesis.

The assistance and friendship from Mr Tan Chun Chai, over the postgraduate years at Universiti Teknologi Malaysia, has been of crucial importance for the successful completion of this work. Thank very much the help rendered.

I would like the express my indebtedness to my family members, as they are the most wonderful supporters for all the decision that I have made. Also I would like to convey my gratitude to those who have helped directly and indirectly in completing this thesis.

Finally, the financial support from the Ministry of Science, Technology and Innovation through the National Science Fellowship Fund is gratefully acknowledge
ABSTRACT

After several decades of development, structural reliability technologies are maturing and becoming one of the essential assessment and design tools in the offshore industry. The objective of the thesis is to quantify the level of structural reliability of the jacket structure in the Malaysia waters. Offshore structural reliability analyses are dependent upon the environmental loads assumed to act on the structure. The modeling of environmental loading is based on the wave climate of Malaysia waters. The joint probability density function for the significant wave height and spectral peak period is modelled. Response of the structure under environmental loading was investigated by using the time domain simulation. Necessary simulation time steps are established. Interaction ratios of the members were computed based on the API RP2A-WSD to determine the level of stress utilisation of the members. From here, critical members of the jacket structure were identified. The probability failure of the critical members and other structural members of interest was determined by using the Hasofer and Lind reliability index. The fluctuation in loads and variation material properties were accounted in the assessment. For many cases failure of one component will not result in the collapse of the whole structure. Thus, system reliability analysis was carried out by using the pushover method. The system was modeled as a series of parallel sub-system and the reliability of the system was evaluated by using the simple bound. The failure path of the structure was identified. Deterministic system effects of the structure were analyzed to study the redundancy of the structure, which were quantified by the reserve strength and the damage tolerance ratio. From here, the level of reliability of the jacket structure is quantified, and it serves as a reference for the evaluation of reliability-based design of jacket structures in Malaysia waters.
ABSTRAK

LIST OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Problem Background and Motivation 1
1.3 Research Objectives 4
1.4 Scope of Study 5
1.5 Thesis Organisation 6
2 LITERATURE REVIEW 8

2.1 Introduction 8
2.2 Development of Structural Reliability Applications 8
2.3 Outlook to the Development of the Offshore Industry 10
2.4 Historical Development of Oil and Gas Industry in Malaysia 11
2.5 Application of Reliability Analysis in the Offshore Industry 14
2.6 Reliability Based Code 15
2.7 Deterministic and Probabilistic Approaches in Reliability Analysis 17
2.8 Fundamental of Reliability Analysis 19
2.9 Classification of Reliability Methods 21
2.10 System Reliability 23
2.11 Loading on Fixed Offshore Structures 24
 2.11.1 Environmental Loadings 26
 2.11.2 Joint Probability of Environmental Parameters 27
 2.11.3 Wave Kinematics 29
 2.11.4 Environmental Induced Forces 33
 2.11.4.1 Wave Force 33
 2.11.4.2 Current Force 36
 2.11.4.3 Wind Force 37
2.12 Methods of Analysis of Fluid Loading on Offshore Structures 39
2.13 Response of Structure under Environmental Loadings 41
2.14 Concluding Remarks 43
3 ENVIRONMENTAL MODELING

3.1 Introduction 50
3.2 Environmental Condition of South China Sea and Data Description 51
3.3 Joint Probability of Wave Height and Wave Period 53
 3.3.1 Joint Distribution Functions 56
 3.3.2 Comparison of Fit of Distribution Functions 60
 3.3.3 Long Term Response of Wave Climate 66
3.4 Wind Speed 69
3.5 Current Speed 75
3.6 Concluding Remarks 75

4 RESPONSE OF JACKET STRUCTURE UNDER ENVIRONMENTAL LOADING CONDITIONS 77

4.1 Introduction 77
4.2 Structure Description 77
4.3 Probabilistic Fluid Loading Model 80
4.4 Non-linear Dynamic Analysis 82
 4.4.1 Newmark-\(\beta \) Method 85
4.5 Simulations Studies 86
 4.5.1 Required Simulation Length 87
 4.5.2 Hybrid Simulation-Analytical Model 94
 4.5.3 Direct Simulation 96
 4.5.4 Numerical Results 97
5 COMPONENT RELIABILITY ANALYSIS

5.1 Introduction 109
5.2 Method of Analysis 110
5.3 Monte Carlo Simulation 111
 5.3.1 Generating Random Variables 111
5.4 Loading Variables 113
 5.4.1 Response Surface 114
 5.4.1.1 Global Response 116
 5.4.1.2 Local Response 120
5.5 Resistance Variables 123
 5.5.1 Resistance Uncertainties 124
5.6 Limit State 125
5.7 Hasofer and Lind Reliability Index 128
5.8 Program Description 133
5.9 Results and Discussions 136
5.10 Sensitivity Studies 147
5.11 Concluding Remarks 152

6 SYSTEM RELIABILITY 154

6.1 Introduction 154
6.2 Range of Methods 154
6.3 Method of Analysis Adopted 157
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4 Modeling of Post Failure Behaviour</td>
<td>159</td>
</tr>
<tr>
<td>6.5 Failure Tree</td>
<td>160</td>
</tr>
<tr>
<td>6.6 Methods in Computing Structural Reliability</td>
<td>163</td>
</tr>
<tr>
<td>6.6.1 Classification of System Reliability</td>
<td>164</td>
</tr>
<tr>
<td>6.7 System Effects</td>
<td>165</td>
</tr>
<tr>
<td>6.7.1 Reserve Strength</td>
<td>166</td>
</tr>
<tr>
<td>6.7.2 Residual Strength</td>
<td>168</td>
</tr>
<tr>
<td>6.8 Results</td>
<td>169</td>
</tr>
<tr>
<td>6.9 Concluding Remark</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 DISCUSSION</td>
<td>181</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>181</td>
</tr>
<tr>
<td>7.2 Environmental Modeling</td>
<td>181</td>
</tr>
<tr>
<td>7.3 Structural Response under Environmental Loading Conditions</td>
<td>184</td>
</tr>
<tr>
<td>7.4 Component Reliability Analysis</td>
<td>186</td>
</tr>
<tr>
<td>7.5 Variability in Component Reliability Index</td>
<td>191</td>
</tr>
<tr>
<td>7.6 Computational Method for Component Reliability</td>
<td>192</td>
</tr>
<tr>
<td>7.7 System Reliability</td>
<td>193</td>
</tr>
<tr>
<td>7.8 System Effects</td>
<td>194</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Load Factor for the Gulf of Mexico, North Sea, Mediterranean Sea and the Indonesia waters.</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Parameters of distribution function fitted to data From South China Sea</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Occurrence of annual maxima wind speed</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>Distribution Functions</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>Test of the Goodness of Fit for the wind speed</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Input Parameters for Environmental Loadings</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Maximum response of wave crest from the simulation of wave histories using the Jonswap spectrum</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Stress utilisation ratio for 10 most critical members in the wave direction of 0 degree</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Stress utilisation ratio for 10 most critical members in the wave direction of 15 degree</td>
<td>106</td>
</tr>
<tr>
<td>4.5</td>
<td>Stress utilisation ratio for 10 most critical members in the wave direction of 30 degree</td>
<td>106</td>
</tr>
<tr>
<td>4.6</td>
<td>Stress utilisation ratio for 10 most critical members in the wave direction of 45 degree</td>
<td>107</td>
</tr>
<tr>
<td>5.1</td>
<td>Input data for the response surface analysis</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Global Response</td>
<td>119</td>
</tr>
<tr>
<td>5.3</td>
<td>Ranking of the structural members that has the lowest reliability index</td>
<td>139</td>
</tr>
</tbody>
</table>
5.4 Reliability index for the 10 most critical members based on the stress utilisation ratio

5.5 Reliability Index of the Jacket Leg

5.6 Reliability Index of Diagonal Members

5.7 Reliability Index of Horizontal Members

5.8 Reliability Index of Inner members (Horizontal members) within the Jacket

5.9 Reliability index of members at different orientation, at the same elevation for the wave direction of 0 degree

5.10 Comparison of the reliability index for the inclined members at 2nd elevation at the wave direction of 0 degree

5.11 Comparison of the reliability index for member 251 at different wave direction

6.1 1st path failure

6.2 2nd path failure

6.3 3rd path failure

6.4 4th path failure

6.5 Probability of failure for each failure path

6.6 Bounds on the system reliability index predicted from the lower bound

6.7 Bounds on the system reliability index predicted from the upper bound

6.8 Reserve Strength

6.9 Damage tolerance ratio for a single member removed

6.10 Damage tolerance ratio for 2 members removed

7.1 Comparison of significant wave height for the return period of 100 years for different locations

7.2 Comparison of extreme wave height for the South China Sea (Malaysia waters)

7.3 Reliability index of 4-legged jacket structure

7.4 Detail of Platform (after Gde Pradnyana et al. 2000)
B1 Jacket structure’s configuration

C1 Numbering system of the jacket structure

E1 Local response for selected members of the jacket structure (Wave direction- 0 degree)

E2 Table E2: Local response for selected members of the jacket structure (Wave direction- 90 degree)

E3 Local response for selected members of the jacket structure (Wave direction- 180 degree)

E4 Local response for selected members of the jacket structure (Wave direction- 270 degree)

G1 Response Surface for the 1st Failure Path

G2 Response Surface for the 2nd Failure Path

G3 Response Surface for the 3rd Failure Path

G4 Response Surface for the 4th Failure Path
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of offshore structures</td>
<td>44</td>
</tr>
<tr>
<td>2.2</td>
<td>Loading and resistance probability density and safety margin</td>
<td>45</td>
</tr>
<tr>
<td>2.3</td>
<td>Definition of wave train</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>Cnoidal wave</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Validity of wave theories (Chakrabarti, 1987)</td>
<td>46</td>
</tr>
<tr>
<td>2.6</td>
<td>Definition of wave forces on small diameter cylinder</td>
<td>47</td>
</tr>
<tr>
<td>2.7</td>
<td>Distribution of the wave induced velocity and acceleration on a pile</td>
<td>47</td>
</tr>
<tr>
<td>2.8</td>
<td>Methods of combining current and wave (Barltrop, 1990)</td>
<td>48</td>
</tr>
<tr>
<td>2.9</td>
<td>Frequency domain analysis (Hallam, 1997)</td>
<td>49</td>
</tr>
<tr>
<td>2.10</td>
<td>Static and dynamic analysis response curve</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Scatter diagram for significant wave height and Spectral peak period</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Linear contour of data from South China Sea (East Coast of Peninsular Malaysia)</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Logarithmic contour of data from South China Sea (East Coast of Peninsular Malaysia)</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Linear contour plot of bivariate Lognormal distribution fitted to the data from South China Sea (East Coast of Peninsular Malaysia)</td>
<td>63</td>
</tr>
</tbody>
</table>
3.5 Linear contour plot of bivariate Weibull distribution fitted to the data from South China Sea (East Coast of Peninsular Malaysia) 63

3.6 Linear contour plot of bivariate Lonewe distribution fitted to the data from South China Sea (East Coast of Peninsular Malaysia) 64

3.7 Logarithmic contour plot of bivariate Lognormal distribution fitted to the data from South China Sea (East Coast of Peninsular Malaysia) 64

3.8 Logarithmic contour plot of bivariate Weibull distribution fitted to the data from South China Sea (East Coast of Peninsular Malaysia) 65

3.9 Logarithmic contour plot of bivariate Lonowe distribution fitted to the data from South China Sea (East Coast of Peninsular Malaysia) 65

3.10 Comparison between the Lognormal distribution and the Lonowe distribution at the tail region for significant wave height 66

3.11 Comparison between the empirical distribution and the fitted Lonowe model for the cumulative distribution function H_s 67

3.12 Probability plot for Lognormal distribution (least square method) 73

3.13 Probability plot for Extreme Value distribution (least square method) 73

3.14 Probability plot for Weibull distribution (least square method) 74

3.15 Probability plot for Weibull distribution using maximum likelihood 74

3.16 Current profile for storm condition 75

4.1 Jacket Structure 78

4.2 Geometrical information on immerse pipe option in ANSYS 79

4.3 Current profile stretching 81
4.4 Displacement at X-axis (Node 705) 87
4.5 Displacement at Y-axis (Node 705) 88
4.6 Displacement at Z-axis (Node 705) 88
4.7 Sample of simulation time history from the Jonswap spectrum 90
4.8 Number of simulations required based on the total set of simulated time history 94
4.9 Comparison of the displacement for Node 61 simulated by using the optimum time interval and the larger time interval of the direct time integration scheme in Ansys V.6.0 98
4.10 Comparison of the stress utilisation ratio simulated by using the optimum time interval and the larger time interval of the direct time integration scheme in Ansys V.6.0 99
4.11 Comparison between the direction simulation and the hybrid simulation analytical method at load step of 226 100
4.12 Comparison between the direction simulation and the hybrid simulation analytical method at load step of 227 100
4.13 Stress utilisation ratio of the structural members for the wave direction of 0 degree (Node I) under axial and bending stress 103
4.14 Stress utilisation ratio of the structural members for the wave direction of 0 degree (Node J) under axial and bending stress. 103
4.15 Comparison of Stress Utilization Ratio- In Place Analysis and Analysis with Environmental Load for wave direction of 0 degree. 106
5.1 Mapping for Simulation, where the random number from the uniform distribution is transformed to a lognormal distribution 113
5.2 Response surface model to obtain stresses and forces in members and joints in a structure

5.3 Comparison of the Results Generated from ANSYS and the Global Response Mode for Base Shear (Wave Direction, 0 degree)

5.4 Comparison of the Results Generated from ANSYS and the Global Response Mode for Overturning Moment (Wave Direction, 0 degree)

5.5 Comparison of the Results Generated from ANSYS and the Local Response Mode for Axial Stress, Node I (Wave Direction, 0 degree).

5.6 Comparison of the Results Generated from ANSYS and the Local Response Mode for Axial Stress, Node J (Wave Direction, 0 degree)

5.7 Comparison of the Results Generated from ANSYS and the Local Response Mode for Bending Stress, Node I (Wave Direction, 0 degree)

5.8 Comparison of the Results Generated from ANSYS and the Local Response Mode for Bending Stress, Node J (Wave Direction, 0 degree)

5.9 Failure Surface

5.10 The Hasofer and Lind reliability index β, defined as the smallest distance from the origin to the failure surface in the normalized z-coordinate system

5.11 Linearize failure surface

5.12 Non-linear failure surface where vector $\overline{\alpha}$ is a unit normal vector in the design point A

5.13 Relation between reliability index and probability of failure

5.14 Component Reliability Program Flow Chart

5.15 Force Profile Distribution

5.16 Reliability Index of the Jacket Leg

5.17 Reliability Index of Diagonal Members

5.18 Reliability Index of Horizontal Members
5.19 Reliability Index of members between the jacket leg (X-bracing) 146
5.20 Variation of reliability index with respect to the elevation 146
5.21 Failure characteristic under tension and compression 147
5.22 The Variation of Wave Height on the Reliability Index 149
5.23 The Variation of Wave Period on the Reliability Index 149
5.24 The Variation of Current Speed on the Reliability Index 150
5.25 The Variation of Wind Speed on the Reliability Index 150
5.26 The Variation of Drag Coefficient on the Reliability Index 151
5.27 Sensitivity Study (10% increase in design value) 151
5.28 Sensitivity Study (10% decrease in design value) 152
6.1 Range of methods for system reliability 155
6.2 Models of Component Post-Failure Behaviour 160
6.3 Failure Tree of the Jacket Structural System 163
6.4 Pushover Curve-Intact Condition for the wave direction of 0 degree 173
6.5 Pushover Curve-Intact Condition for the wave direction of 90 degree 173
6.6 Pushover curve - Intact Condition for the wave direction of 180 degree 174
6.7 Pushover curve - Intact Condition for the wave direction of 270 degree 174
6.8 Pushover Curve-Damage Condition for the wave direction if 0 degree with member 251 removed 175
6.9 Pushover Curve-Damage Condition for the wave direction of 90 degree with member 241 removed 176
6.10 Pushover Curve- Damage Condition for the wave direction of 180 degree with member 271 removed 176
6.11 Pushover Curve-Damage Condition for the wave direction of 270 degree with member 151 removed

6.12 Pushover Curve-Damage Condition for the wave direction of 0 degree with member 251 and 241 removed

6.13 Pushover Curve-Damage Condition for the wave direction of 90 degree with member 241 and 251 removed

6.14 Pushover Curve-Damage Condition for the wave direction of 180 degree with member 161 and 251 removed

6.15 Pushover Curve-Damage Condition for the wave direction of 270 degree with member 151 and 154 removed

7.1 Safety Indices for Various Marine and Land Based Structures. (after Stiansen and Thamyambali, 1987)

7.2 Distribution of Reliability Index for the Jacket Structure

7.3 Reliability Index vs. E/(D+L) (after Pradnyana et al., 2000)

A1 Jacket Structure
A2 1st Elevation of Jacket Structure
A3 Conner A
A4 Conner B
A5 Conner C
A6 Conner D
A7 2nd Elevation of jacket structure
A8 3rd Elevation of jacket structure
A9 4th Elevation of jacket structure
A10 5th Elevation of jacket structure
A11 Row B
A12 Base elevation of Row B
A13 Row 1
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A14</td>
<td>Base elevation of Row 1</td>
<td>219</td>
</tr>
<tr>
<td>A15</td>
<td>Row A</td>
<td>220</td>
</tr>
<tr>
<td>A16</td>
<td>Base elevation of row A</td>
<td>220</td>
</tr>
<tr>
<td>A17</td>
<td>Row 2</td>
<td>221</td>
</tr>
<tr>
<td>A18</td>
<td>Base elevation of Row 2</td>
<td>221</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Wave amplitude</td>
<td></td>
</tr>
<tr>
<td>A_I</td>
<td>Frontal area for inertia coefficient</td>
<td></td>
</tr>
<tr>
<td>A_D</td>
<td>Frontal area for drag coefficient</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>BS</td>
<td>Base Shear</td>
<td></td>
</tr>
<tr>
<td>a_k</td>
<td>Magnitude of one sided JONSAWP spectrum</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Celerity</td>
<td></td>
</tr>
<tr>
<td>C_M</td>
<td>Inertia Coefficient</td>
<td></td>
</tr>
<tr>
<td>C_D</td>
<td>Drag Coefficient</td>
<td></td>
</tr>
<tr>
<td>C_S</td>
<td>Shape Coefficient</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Water depth</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
<td></td>
</tr>
<tr>
<td>D_L</td>
<td>Nominal dead load</td>
<td></td>
</tr>
<tr>
<td>DTR</td>
<td>Damage tolerance ratio</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>East</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Force per length</td>
<td></td>
</tr>
<tr>
<td>f_a</td>
<td>Output of axial stress generated from Ansys V.6.0</td>
<td></td>
</tr>
<tr>
<td>f_b</td>
<td>Output of bending stress generated from Ansys V.6.0</td>
<td></td>
</tr>
<tr>
<td>F_y</td>
<td>Yield strength</td>
<td></td>
</tr>
<tr>
<td>F_b</td>
<td>Allowable bending stress</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Total force</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gravitation acceleration</td>
<td></td>
</tr>
<tr>
<td>$g<0$</td>
<td>Failure state</td>
<td></td>
</tr>
<tr>
<td>$g(X_1,X_2,...,X_n)$</td>
<td>Limit state function</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Wave height</td>
<td></td>
</tr>
<tr>
<td>$H_{1/3}$</td>
<td>1/3 of wave height</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>$H_{1/10}$</td>
<td>$1/10$ of wave height</td>
<td></td>
</tr>
<tr>
<td>H_{max}</td>
<td>Maximum wave height</td>
<td></td>
</tr>
<tr>
<td>H_s</td>
<td>Significant wave height</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Wave number</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Kuelegan-Carpenter number</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Wave length</td>
<td></td>
</tr>
<tr>
<td>L_L</td>
<td>Nominal live load</td>
<td></td>
</tr>
<tr>
<td>$m_{y_{\text{max}}}$</td>
<td>Mean value of mean maxima</td>
<td></td>
</tr>
<tr>
<td>MWL</td>
<td>Mean Water Line</td>
<td></td>
</tr>
<tr>
<td>$N(\)$</td>
<td>Normal distribution</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>North</td>
<td></td>
</tr>
<tr>
<td>N_{ss}</td>
<td>Number of sea-state realisation</td>
<td></td>
</tr>
<tr>
<td>$N_{\text{ss}_{\text{req}}}$</td>
<td>Number of sea-state (simulation) required</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Total data</td>
<td></td>
</tr>
<tr>
<td>OTM</td>
<td>Overturning moment</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Probability of failure</td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>Probability of occurrence</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
<td></td>
</tr>
<tr>
<td>R_N</td>
<td>Nominal resistance</td>
<td></td>
</tr>
<tr>
<td>RIF</td>
<td>Residual resistance factor</td>
<td></td>
</tr>
<tr>
<td>RSR</td>
<td>Reserve strength ratio</td>
<td></td>
</tr>
<tr>
<td>R_u</td>
<td>Ultimate lateral load capacity of platform</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Total wave elevation (from mean water line to sea bed)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Loading</td>
<td></td>
</tr>
<tr>
<td>S_N</td>
<td>Nominal loading</td>
<td></td>
</tr>
<tr>
<td>S_R</td>
<td>Reference lateral loading</td>
<td></td>
</tr>
<tr>
<td>$S_w(\omega)$</td>
<td>Sea surface spectrum</td>
<td></td>
</tr>
<tr>
<td>$S_F(\omega)$</td>
<td>Force spectrum</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Wave Period</td>
<td></td>
</tr>
<tr>
<td>T_{min}</td>
<td>Minimum time interval</td>
<td></td>
</tr>
<tr>
<td>T_p</td>
<td>Spectral peak period</td>
<td></td>
</tr>
</tbody>
</table>
\(T_r \) - Return period
\(T_Z \) - Zero crossing period
\(U \) - Uniform wind velocity
\(u \) - Horizontal water particle velocity
\(U_{TS} \) - Surface current velocity
\(U_{TZ} \) - Current velocity at any depth
\(v \) - Vertical water particle velocity
\(V_{Y_{\text{max}}} \) - Covariance of the maximum response in a single sea-state
\(V_{\eta_{\text{max}}} \) - Covariance of maximum wave crest elevation
\(W_L \) - Nominal environmental load
\(x \) - Distance of wave propagation along x-axis
\(X_i \) - Discretized wave history
\(X_R \) - Modeling accuracy for resistance
\(X_S \) - Modeling accuracy for loading
\(y \) - Wave elevation
\(Y(y) \) - Wave crest elevation function
\(\bar{Y}_{\text{max}} \) - Mean maxima estimate
\(Y_{\text{max,\text{max}}} \) - Mean maxima response generated from the Weibull 3-parameter
\(Z \) - Failure surface
\(z \) - Elevation of wind speed
\(z_R \) - One hours mean speed at the elevation of 10m
\(z_S \) - One hours mean speed at the elevation of 20m
\(\Lambda(\alpha) \) - Periodicity function
\(\alpha \) - Unit normal vector
\(\beta \) - Reliability Index
\(\Phi \) - Partial resistance factor
\(\Phi(\cdot) \) - Standard normal probability
\(\phi \) - Potential function
\(\gamma_D \) - Load factor for dead load
\(\gamma_L \) - Load factor for live load
\(\gamma_W \) - Load factor for environmental effects
\(\gamma \) - Peakedness parameter
\(\lambda \) - Wave length
\(\eta \) - Vertical water particle acceleration
\(\eta_h \) - Transition point for LONOWE model
\(\eta_p \) - Wave profile
\(\eta(t) \) - Gaussian wave elevation
\(\eta_{max} \) - Crest height
\(\rho \) - Mass density of water
\(\rho_a \) - Density of air
\(\mu_R \) - Mean of resistance
\(\mu_S \) - Mean of loading
\(\mu_Z \) - Mean of failure function
\(\mu_{T|H} \) - Mean spectral peak period given significant wave height
\(\omega \) - Wave frequency (in radian)
\(\omega_k \) - Circular frequency
\(\sigma_R \) - Standard deviation of resistance
\(\sigma_S \) - Standard deviation of loading
\(\sigma_Z \) - Standard deviation of failure function
\(\sigma_{Y_{max}} \) - Standard deviation of mean maxima
\(\sigma_{T|H} \) - correlation coefficient between the significant wave height and the zero crossing period
\(\theta \) - Wave phase angle
\(\theta_k \) - Random phase
\(\xi \) - Horizontal water particle acceleration
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Jacket structure</td>
<td>213</td>
</tr>
<tr>
<td>B</td>
<td>Jacket’s structure configuration</td>
<td>222</td>
</tr>
<tr>
<td>C</td>
<td>Numbering system of the jacket structure</td>
<td>227</td>
</tr>
<tr>
<td>D</td>
<td>Calculation of stress utilisation</td>
<td>229</td>
</tr>
<tr>
<td>E</td>
<td>Response surface for component reliability</td>
<td>232</td>
</tr>
<tr>
<td>F</td>
<td>Sample calculation for the Hasofer</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>and Lind reliability index</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Response surface for system reliability</td>
<td>247</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter discusses on the overview of the thesis. It gives a brief introduction to the title, research objectives, scopes of study and the thesis organization.

1.2 Problem Background and Motivation

The field of offshore structural reliability analysis is of particular importance at the present, considering that a number of changes that are taking place within the offshore industry. The changes include the introduction of the Load Resistance Factor Design Code (API-RP 2A LRFD, 1993) and the ISO developments. There is also an increasing appreciation within the industry of the potential benefits from the use of these techniques especially after the applications in the area of optimized inspection planning (Onoufriou, 1999). Apart from that, the introduction of goal
setting regime that allows more flexibility in the way offshore platforms are design and assessed has also proliferated the reliability based assessment.

The above mentioned changes and the increasing need to address life cycle planning issues such as the Inspection, Maintenance and Reliability (IMR) planning have created a wider acceptance framework for reliability assessment methods. A number of developments in the area of reliability analysis and the increasing hardware capacity make the use of these techniques more feasible at the various stages of the life of a platform.

Although there is an increasing recognition within the industry of the significant potential safety and cost benefits from the application of offshore structural reliability analysis, there is varying degree of confidence in the methods due to the various uncertainties in this type of analysis. Moreover, the outcome of the analysis is highly dependent upon the user competency and the assumptions made. It is generally recognized that structural problems are often nondeterministic. Moreover, structures are designed and built despite imperfect information and knowledge. In short, problems of structural design must be resolved in the face of uncertainty and as a consequence, risk, which is the probability an adverse event that will occur. In order to quantify the risk, random variables such as the loadings and resistance of a structure pertaining to the limit state have to be determined.

The research in the field of offshore structural reliability is still in its stage of infancy in Malaysia compare to the countries in Europe or United States. Though the advancement of the reliability analysis has reach to a level of maturity, the published results of the application of reliability analysis on the offshore structures in Malaysia is scarcely available.

In reliability assessment, few issues have to be addressed, such as the loading probabilities, variation in the resistances and the methodology adopted in the
In the loading probabilities, environmental loading is the main concern due to its randomness. In order to capture the randomness, the evaluation of environmental loading has moved from the deterministic approach to the probabilistic approach by adopting the joint environmental model. These models are well established in the Gulf of Mexico and the North Sea, where extensive database on the oceanographic condition are at disposable. However, the weather in the Malaysia waters is rather calm and not as extreme as the weather in Gulf of Mexico or North Sea. Therefore the application of the models which are developed in other region will results in the over-design of the offshore structure. French et al. (1992) has noted that the design environmental criteria for the platforms in South East Asia are usually increased, in some cases by as much as 60% during the life of the platform due to the scarcity of data during the construction of the platforms. Therefore there is a need to formulate the design criteria of the environmental design parameters for a specific location to ensure that the structures built are safe and economical.

Compared to the loading properties, the issue of variation in the structural resistance is inconsequential as study has proven that the resistance can be treated deterministically in structural analysis without affecting the results enormously (Sigurdsson, et al., 1994). However, the methodology which is adopted in the reliability assessment plays an important role in determining the results of the analysis as different methods produce different results. Major development in structural reliability methodology started in the sixties to develop the tools for quantifying the effects of uncertainties. At present, there are many methods that are well developed to assist the calculation of structural reliability. For component reliability analysis, methods such as First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM) are widely used for the assessment. While for structural system reliability analysis, the method ranges from the component based approach to the more complex one such as the full probabilistic analysis. Among the well-known theory, which are formulated for the system analysis are the branch and bound method and the beta unzipping method (Thoft-Christensen and Murotsu, 1986). The selection of method depends on other factors such as internal and external constraint. Internal constraint would be the
uncertainties associated with the data, while the external constraint would be the expertise of the analyst and the availability of computational tools. Consequently, each case is unique and the methodology adopted has to be based on the needs of the case study and the resources that are available.

Based on the above background, the research problems covered within this thesis are summarised as follows;

i. What are the design environmental criteria for the offshore structures in the Malaysia waters by accounting the randomness of the loadings?
ii. How reliable is the offshore structure that is built in the Malaysia waters?
iii. For the present case study, what is the best method to be adopted considering the limited resource in data and computational efforts?

1.3 Research Objectives

The research objectives are as follows:

- To determine the environmental loading conditions at the location of the jacket structure.
- To study the response of the jacket structure under environmental loadings, i.e. wave, wind and current.
- To identify the critical members in the jacket structure.
- To investigate the level of reliability of the offshore structure in Malaysia’s waters.
1.4 Scope of Study

The scopes of work were divided into three parts. The platform which was used in this study is assumed to be a new platform, not in service conditions. Therefore deterioration of the platform was not considered. It checked the soundness of the design of the structure from the reliability point of view.

The first part focused on the modelling of environmental parameters. The environmental loading condition is modelled based on the met-ocean data obtained for the Malaysia waters. Modelling works were carried out to predict the extreme condition of the ocean weather. The environmental parameters considered in the modelling work were the wave and wind loading.

In the second part, the scope of work focused on the response of the structure under environmental loading conditions. The environmental loads are imposed on the structure. The simulations studies are carried out in the dynamic, time domain analysis by taking into account of the probabilistic fluid loading by using a Finite Element Software, ANSYS. From the simulations, the critical members are identified and the utilisation ratios of the structural members are calculated.

The final part of the study focused on the reliability analysis of the structure. A reliability program is written in Matlab to study the probability failure of the critical members and other members of interest. Parametric investigations are carried out to study the effects of the environmental loadings on the structural members. From the component reliability analysis, the study proceeds to the system reliability analysis. The probability failure of the structure is investigated. The system effects analysis are also included, to study the level of redundancy of the structure.
1.5 Thesis Organisation

This thesis consists of eight chapters proceed by the introductory chapter. Chapter Two contains the reviews on the related literature and theories pertaining to reliability analysis. The development of reliability assessments, theories and the applications in the offshore industry are expounded concisely. In addition to the review of reliability analysis, theories of wave loading and structural analysis are also discussed to give a clearer picture on the analysis of offshore structures.

Chapter Three discusses on the modeling work of the environmental parameters where the platform is located. The modelling works are presented with the theories of joint probabilities, bivariate distributions and the theory of design wave. The design environmental parameters, which are determined and applied in the structural analysis.

Chapter Four presents the response of the structure under environmental loading conditions. The methodology and theories which are adopted are discussed. Comparisons are made on the results based on the methodologies adopted. Results from the structural simulation studies and the utilisation ratio of critical members are presented.

The component reliability analysis is presented in Chapter Five. The chapter begins with the discussion on the methodology which are adopted, the loadings and the resistance parameters. The details on the computation of the reliability index are discussed thoroughly. The chapter is concluded with the presentation of results and general discussion.
Chapter Six focuses on the system reliability of the structure. The failure path of the structure is identified for every direction and this forms the system reliability of the structure by using the series of parallel sub-system. The chapter documents the steps and theory adopted in the analysis. Apart from this, it contains brief discussion on other methodologies, which are adopted by other researchers. The chapter is concluded with the studies on the system effects on the redundancy of the structure.

Chapter Seven encapsulates the work and the general discussion of the whole thesis. It compares the results, which are obtained with the findings of other researchers.

Finally the thesis is concluded with the final chapter, the conclusion, which comprises of the summary of the works and recommendations for further research.
REFERENCES

(1993). Development of a Methodology for Safety Assessment of Existing Steel
Jacket Offshore Platforms. 22nd Annual Offshore Technology Conference. 7th-

America Petroleum Institute. (1993). Recommended Practice for Planning,

America Petroleum Institute. (1993). Recommended Practice for Planning,
Designing and Constructing Fixed Offshore Platforms-Load and Resistance

Australia: Rosecons.

Technology. 1160-1172.

Proceedings of the 12th International Conference on Offshore Mechanics and

Karunakaran D., Leira B.J. and Moan T. (1993). Reliability Analysis of Drag-
Dominated Offshore Structures. *The Third International Offshore and Polar
Engineering Conference*, Singapore. 6th -11th June 1993. USA: ISOPE, 600-605

Management (Holdings) Ltd. 18-23.

Longuet-Higgins M.S. (1983). On the Joint Distribution of wave Periods and

Method For Offshore Structures Based Upon the Joint Probability of
Environmental Parameters. *7th International Conference on Offshore Mechanics
and Artic Engineering*. February 7-12, 1988. United States of America: ASME,
75-80.

Arlington VA: SNAME.

Implementation of Reliability Methods to Marine Structures. *Transaction
SNAME*.353-380

