DISCOVERY AND COMPOSITION OF WEB SERVICES USING ARTIFICIAL INTELLIGENCE PLANNING AND WEB SERVICE MODELING ONTOLOGY

SAYED GHOLAM HASSAN TABATABAIEI

UNIVERSITI TEKNOLOGI MALAYSIA
DISCOVERY AND COMPOSITION OF WEB SERVICES USING ARTIFICIAL INTELLIGENCE PLANNING AND WEB SERVICE MODELING ONTOLOGY

SAYED GHOLAM HASSAN TABATABAEI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

Faculty of Computer Science and Information Systems
Universiti Teknologi Malaysia

DECEMBER 2010
To my beloved mother and father
ACKNOWLEDGEMENTS

First and foremost, I would like to thank God, the Almighty, for blessing me in every aspect of this dissertation. Then I would like to thank my principal supervisor, Assoc. Prof. Dr. Wan Mohd Nasir Wan Kadir, whose inspiration and guidance helped me to start off with my PhD research and his continual contribution and support with thoughtful comments helped me to finish it in a timely manner. I am grateful for the freedom he gave me in choosing research problems of my interest and letting me work on them at my own pace. I would also like to thank my co-supervisor, Assoc. Prof. Dr. Suhaimi Ibrahim, for his support and encouragement.

Moreover, I would like to thank the examiners of my PhD thesis, Prof. Gabriele Kotsis, Prof. Shahrul Azman Mohd Noah and Dr. Eric Pardede for their invaluable comments on the thesis. I am also indebted to Universiti Teknologi Malaysia (UTM) and the Ministry of Science & Technology and Innovation (MOSTI), Malaysia for funding my PhD study.

It would be much harder to live so far from my family without my dear friends at Advanced Informatics School (AIS), Mazdak, Amir, Ganthan, Aminat, Mojtaba, Mohammad, Javad, Alaeddin, Hamed, Meysam, Usama, Mahdi, Farhang, Hadi, Mukhtar, and others. Moreover, I owe very much to my parents, sisters, and brothers who have always supported me with their endless love.
ABSTRACT

In today’s Web environment, Web services are the preferred standards-based way to realize Service Oriented Architecture (SOA) computing. A problem that has become one of the recent critical issues is automated discovery and composition of Semantic Web services. A number of approaches have been presented to solve the problem. However, most of these approaches only consider discovery or composition of Web services but not both. In this study, an effective approach called AIMO, based on Artificial Intelligence (AI) planning, Web Service Modeling Ontology (WSMO), and Semantic Web has been proposed to tackle the problem. The main purpose of this study is to investigate and develop a novel approach for automated Web service discovery and composition. In this case, a comparative evaluation of state-of-the-art approaches for Web service composition approaches has been done and the strengths and weaknesses of those approaches have been discussed. Moreover a translator for interaction between WSMO and AI-planning based on Description Logics has been proposed. In addition, some parts of AIMO architecture have been tested on a practical case study, and the results based on the experimental validation demonstrate that AIMO provides an effective and applicable solution. AIMO continues to support loose coupling paradigm of SOA by separating the discovery from the composition of Web services.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of the Problem 1
1.2 Statement of the Problem 2
1.3 Objectives of the Study 5
1.4 Scope of the Study 6
1.5 Significance of the Study 7

2 LITERATURE REVIEW

2.1 Definition of Web Service 9
2.2 Definition of Semantic Web 12
2.3 Definition of Semantic Web Services ... 13
2.4 Definition of Web Service Discovery and Composition 16
2.5 General Framework for Web Service Composition 17
2.6 Web Service Composition as Planning 20
2.7 HTN Planning for Web Service Composition 23
2.8 Prominent Approaches in Web Service Composition 24
 2.8.1 EFlow .. 24
 2.8.2 Polymorphic Process Model (PPM) 25
 2.8.3 Situation Calculus ... 25
 2.8.4 HTN-DL .. 26
 2.8.5 BPEL4WS .. 30
 2.8.6 OWL-S .. 31
 2.8.7 WSMO .. 33
 2.8.8 Other Web Service Composition Approaches 37
2.9 The Differences between OWL-S and WSMO 38
2.10 The Similarities between OWL-S and WSMO 39
2.11 Description Logics (DLs) and Reasoning 39
2.12 Summary .. 42

3 COMPARATIVE EVALUATION OF STATE-OF-THE-ART WEB SERVICE COMPOSITION APPROACHES 43
3.1 Classification of Approaches in Web Service Composition 43
 3.1.1 AI-Planning-Based Approaches 43
 3.1.2 Workflow-Based Approaches .. 44
 3.1.3 Syntactic-Based Approaches ... 45
 3.1.4 Semantic-Based Approaches ... 46
3.2 Comparative Evaluation ... 46
 3.2.1 Security ... 47
3.2.2 Quality of Service (QoS) .. 48
3.2.3 Automatic Composition .. 50
3.2.4 Composition Scalability .. 51
3.2.5 Correctness Verifiability .. 52
3.2.6 Discovery ... 52

3.3 Discussion .. 53

4 RESEARCH METHODOLOGY ... 55
4.1 Research Design ... 55
4.2 Research Procedure and Activities 58
 4.2.1 Literature Review ... 58
 4.2.2 Analysis of Requirements ... 59
 4.2.3 Development .. 59
 4.2.4 Evaluation ... 60
4.3 Operational Framework ... 63
4.4 Instrumentation ... 64
4.5 Assumptions and Limitations ... 64

5 FORMALIZING WEB SERVICE DISCOVERY AND WEB
SERVICE COMPOSITION PROBLEMS 66
5.1 Description Logics .. 66
5.2 Definition of Semantic Web Services 68
5.3 Definition of Web Service Discovery Problem 70
5.4 Definition of Web Service Composition Problem 74
5.5 Summary .. 78

6 AIMO ARCHITECTURE TO SUPPORT WEB SERVICE
DISCOVERY AND COMPOSITION .. 79
6.1 Motivating Scenario .. 79
6.2 HTN-Planning and HTN-DL Limitations ... 81
6.3 Security Capability and Constraint Types .. 83
 6.3.1 Security-related Goal Constraints .. 84
 6.3.2 Security-related Choreography Constraints 85
 6.3.3 Security-related Orchestration Constraint 86
6.4 AIMO ... 87
 6.4.1 Overview ... 87
 6.4.2 AIMO Architecture ... 91
 6.4.3 Planning Process for AIMO .. 97
6.5 Translating Web Service Descriptions to AIMO 102
 6.5.1 Relation between WSMO and AIMO .. 104
 6.5.2 Translation of WSMO to EHTN-DL .. 106
6.6 Summary .. 123

7 IMPLEMENTATION AND EVALUATION .. 125

7.1 The Prototype Implementation .. 125
 7.1.1 Introduction .. 125
 7.1.2 Infrastructure .. 126
 7.1.3 Discovery Phase .. 129
 7.1.4 Composition and Invocation Phases .. 131
 7.1.5 Graphical User Interface (GUI) ... 134
7.2 Experimental Validation .. 137
 7.2.1 Determining Replication Number or Sample Size 138
 7.2.2 ANOVA Test ... 139
 7.2.3 Testing Correlation ... 142
 7.2.4 Multiple Regression and Single Variable Regression 143
 7.2.5 AIMO-Composer Performance and Scalability 146
7.2.6 Comparison of AIMO with Other Approaches 149
7.3 Discussion 151
7.4 Summary 152

8 CONCLUSIONS AND FUTURE RESEARCH 153
8.1 Summary of the Research 153
8.2 Contributions of the Research 155
8.3 Open Issues and Future Work 156

REFERENCES 158
APPENDIX A 169-170
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparison of state-of-the-art Web service composition approaches</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Operational framework</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>An example for Web service discovery problem</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>An example for composition problem based on Sequential services</td>
<td>76</td>
</tr>
<tr>
<td>5.3</td>
<td>An example for composition problem based on Parallel services</td>
<td>77</td>
</tr>
<tr>
<td>6.1</td>
<td>A matching task and a composite Web service</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Security capabilities and constraints of Web services</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>AIMO translator to translate WSMO transition rules into HTN-DL</td>
<td>110</td>
</tr>
<tr>
<td>7.1</td>
<td>Correlation</td>
<td>143</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparative evaluation of AIMO with other approaches</td>
<td>150</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>How Web services work</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The nature of Semantic Web services</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Annotation of a Semantic Web service identified with WSDL</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The general framework of service composition system</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>HTN-DL algorithm</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>HTN-DL algorithm for translating If-Then-Else control construct</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>HTN-DL algorithm for translating Repeat-While control construct</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>The conceptual model of OWL-S</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Four top-level elements of WSMO</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>WSMO Web service – general description</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Architecture of Knowledge representation systems</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Classification of Web service composition approaches</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Research procedure</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Research flow chart</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Matchmaking notions for semantically enabled discovery</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Web service discovery algorithm</td>
<td>73</td>
</tr>
<tr>
<td>5.3</td>
<td>Example of composition using Sequential Web services</td>
<td>76</td>
</tr>
<tr>
<td>5.4</td>
<td>Example of composition using Parallel Web services</td>
<td>78</td>
</tr>
<tr>
<td>6.1</td>
<td>The user’s goal</td>
<td>81</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.2</td>
<td>Capability Level of the flight booking service</td>
<td>81</td>
</tr>
<tr>
<td>6.3</td>
<td>An example of security ontology in WSMO</td>
<td>84</td>
</tr>
<tr>
<td>6.4</td>
<td>Security-related Goal constraints</td>
<td>85</td>
</tr>
<tr>
<td>6.5</td>
<td>Security-related choreography and orchestration constraints</td>
<td>86</td>
</tr>
<tr>
<td>6.6</td>
<td>Architecture of the AIMO in an abstract level</td>
<td>93</td>
</tr>
<tr>
<td>6.7</td>
<td>Example of matching between two goals and a Web service</td>
<td>95</td>
</tr>
<tr>
<td>6.8</td>
<td>The EHTN-DL algorithm for the planning process</td>
<td>99</td>
</tr>
<tr>
<td>6.9</td>
<td>High-level of the OWL-S process ontology</td>
<td>103</td>
</tr>
<tr>
<td>6.10</td>
<td>From Service to Transition Rules in WSMO</td>
<td>105</td>
</tr>
<tr>
<td>6.11</td>
<td>An example of State Signature for a composite service</td>
<td>108</td>
</tr>
<tr>
<td>6.12</td>
<td>An algorithm for translating transition rules of WSMO</td>
<td>112</td>
</tr>
<tr>
<td>6.13</td>
<td>An example of WSMO If-Then transition rule with else statement</td>
<td>115</td>
</tr>
<tr>
<td>6.14</td>
<td>An example of WSMO forAll-With-Do transition rule</td>
<td>119</td>
</tr>
<tr>
<td>6.15</td>
<td>An HTN-DL based algorithm for translating Choose-With-Do</td>
<td>121</td>
</tr>
<tr>
<td>6.16</td>
<td>An example of WSMO Choose-With-Do transition rule</td>
<td>122</td>
</tr>
<tr>
<td>7.1</td>
<td>An illustration of the implemented prototype using UML diagram</td>
<td>127</td>
</tr>
<tr>
<td>7.2</td>
<td>The run-time mediator and the ontology mapping tools</td>
<td>130</td>
</tr>
<tr>
<td>7.3</td>
<td>The specified goal for the example as a given task</td>
<td>133</td>
</tr>
<tr>
<td>7.4</td>
<td>The matched method to the specified task</td>
<td>133</td>
</tr>
<tr>
<td>7.5</td>
<td>Four operators to perform the matched method to the given task</td>
<td>134</td>
</tr>
<tr>
<td>7.6</td>
<td>Discovery process for the motivating scenario using WSMT tool</td>
<td>135</td>
</tr>
<tr>
<td>7.7</td>
<td>A screen shot from AIMO-Composer tool</td>
<td>136</td>
</tr>
<tr>
<td>7.8</td>
<td>Boxplot of Web service composition time</td>
<td>139</td>
</tr>
<tr>
<td>7.9</td>
<td>A Predicator assumption checking (A)</td>
<td>143</td>
</tr>
<tr>
<td>7.10</td>
<td>A predicator assumption checking (B)</td>
<td>144</td>
</tr>
<tr>
<td>7.11</td>
<td>Linear model (1,Y)</td>
<td>144</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.12</td>
<td>Quadratic model for (1,Y)</td>
<td>145</td>
</tr>
<tr>
<td>7.13</td>
<td>Linear model for (X,50)</td>
<td>146</td>
</tr>
<tr>
<td>7.14</td>
<td>The planning process for the motivating scenario</td>
<td>147</td>
</tr>
<tr>
<td>7.15</td>
<td>Composition execution time for the motivating scenario</td>
<td>147</td>
</tr>
<tr>
<td>7.16</td>
<td>Scalability of the AIMO-Composer for the motivating scenario</td>
<td>148</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AI - Artificial Intelligence
AIMO - AI planning– web service Modeling Ontology
ASM - Abstract State Machine
BPEL4WS - Business Process Execution Language for Web Services
DL - Description Logic
EHTN-DL - Enhanced Hierarchical Task Network- Description Logic
HTN - Hierarchical Task Network
HTN-DL - Hierarchical Task Network- Description Logic
iff - if and only if
OBS - Online Banking System
OCRS - Online Conference Registration System
OWL - Web Ontology Language
OWL-S - Web Ontology Language for Web Services
PPM - Polymorphic Process Model
SOA - Service Oriented Architecture
SOAP - Simple Object Access Protocol
SWS-TC - Semantic Web Service Test Case
UDDI - Universal Description, Discovery, and Integration
WS - Web Service
WSC - Web Service Composition
WSD - Web Service Discovery
WSDL - Web Services Description Language
WSML - Web Service Modeling Language
WSMO - Web Service Modeling Ontology
WSMX - Web Service Modeling eXecution environment
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of publications</td>
<td>169</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

In this chapter an introduction to the current research is provided. Firstly, the background of the problem to be solved is described. After that, the problem statement, and also objective, scope, and importance of the study are described respectively.

1.1 Background of the Problem

In today’s Web environment, a number of companies which are planning to implement the core of their business as a service on the Web are growing dramatically. Therefore, selection and integration of heterogeneous services over the Internet is considered as an outstanding issue in order to realize Web services applications. Current studies on the area of Web service applications are based on specifying them in an expressive and formal language, discovering them on the Web, combining them in an automatic manner, and considering security issues during all Web service processes. The main focus of this research is dedicated to the processes of discovery and composition of Web services.

In some cases if a single Web service does not fulfill the service requestor’s goals, the current Web services should be combined together to achieve the goal. That issue has inaugurated a number of studies on the area of composition of Web services both in industry and academia. It is possible to consider a composed service as a workflow [6] which involves a collection of single services with data flow and
control flow. In order to automatically bind the concrete resources or services with the abstract nodes, the workflow-based approaches can be applied dynamically.

On the other hand, AI-planning based approaches treat with a service like a software component that includes inputs, outputs, preconditions, and effects. After execution, the Web service alters the state of the world. Therefore, preconditions can be treated as world state prerequisites to invoke the service, and effects are the new state produced after the invocation.

In the area of Web services, there are many studies on providing languages and platforms for the process of composition like BPEL4WS (Business Process Execution Language for Web services) [7]. Moreover, in the fourth generation of World Wide Web, the most prominent technology is Semantic Web services like, WSMO (Web Service Modeling Ontology) [9] and OWL-S (Web Ontology Language for Web Services) [20]. Such languages support Semantic representation of available Web services on the Web.

1.2 Statement of the Problem

Currently, majority of approaches for composition of Web services apply the following techniques: Theorem Proving [107], Model Checking [106], Rule-based Planning [105], Classic AI-planning [104], Golog [33], and HTN [103]. Some of them require too much human efforts; some of them neglect consideration of the process of discovery of Web services to support the composition process. However, the key to success of automatic generation of business processes in the fourth generation of World Wide Web, is overcoming both those processes (i.e., discovery and composition) in an integrated manner, which is the focus of this research.

Nowadays, Web services are described by various Semantic Web services standards based on AI-planning. That is, because of expressing preconditions and effects of Web services as logical conditions. Using this analogy, Web services can be treated as planning operators to create composite Web services, such that each
Web service firstly converted to an operator and the goal is described as a logical condition. Therefore, a sequence of services can be generated by the planner.

Although many problems on (semi-) automated Web service composition have been tackled by AI-planning-based approaches, yet there are various obstacles that have not been addressed. The most important problem which has not been addressed is the process of Web service discovery. In order to provide the discovery process, the Web Service Modeling Ontology (WSMO) can be applied to describe all relevant and general features related to services which are available via a Web service interface.

Another problem that has not been considered by majority of Web service composition approaches is security constraints of Web service composition. For instance, a Web service provider may not want to proceed with requests which are sent by a specific IP address, or to define some additional security constraints like Authentication, Authorization, Access control, Privacy, Anonymity, Confidentiality, and Policy on the composition process. Such constraints must be taken into account during Web service composition.

This research aims to provide a semi-automated approach, called AIMO, based on AI-Planning to combine two or more Web services together which are described with Web Service Modeling Ontology (WSMO) for increasing accessibility and facilitating their integration with respect to nonfunctional properties of Web services such as security and Quality of Service. The general research question this research has aimed to answer is:

How to enable WSMO and AI-planning to automatically discover and combine Semantic Web services in order to fulfill the users’ goals?

To address the above question, the following research questions which can address the problem are defined:
RQ1: What is a Web service and how a set of Web services can be combined together?

- What are the requirements for identifying Web services over the Internet?

- How to deal with specifying the plan for the composite Web service interoperability?

- What technologies are needed to support discovery, selection, composition, mediation and invocation of Web services?

RQ2: Why existing approaches for Web service composition are still not able to satisfy all users’ requirements?

RQ3: How to automatically compose the Web services via AI-planning?

- How to specify the Web services in AI-planning?

RQ4: How to enable the Semantic Web to facilitate the process of Web service discovery and composition?

- How to handle differences between Web Service Modeling Ontology and AI-planning?

RQ5: How to secure the process of interoperability between Semantic Web services?

Besides these questions, the following problems have to be addressed by this research:
- **Decentralized Configurations:** Descriptions of Web services standards which are produced by different organizations are different from each other. In fact, the structures or vocabularies which are being used by them might be different.

- **Service Properties:** The capabilities of many Web services might be the same as each other. In that case, non-functional properties, like the Web service provider’s name or Web service provider’s credentials, are the only features to distinguish between Web services. Therefore, the non-functional properties are the key elements to make decision on selection of Web services during Web services composition process.

- **Composite Web Services:** Some of Web services are not atomic such that they are created from some other (either atomic or composite) Web services. Thus, describing and reasoning of such Web services have to be taken into account.

- **Efficiency:** The process of making inference on available Web services on the Internet, like matching between their functionalities, has to be taken into consideration efficiently.

1.3 Objectives of the Study

The research objectives are mentioned based on the problem statement, as follows:

- To evaluate state of the art of Web service composition approaches.

- To investigate and develop a novel approach called AIMO for automated Web service discovery and composition based on AI-planning and Semantic Web services techniques for minimizing the
time and increasing correctness verifiability of Web service composition.

- To enable security constraints for the process of Web service composition.

- To demonstrate the applicability of the proposed approach.

- To evaluate and compare the proposed approach with other current approaches with respect to the related criteria.

1.4 Scope of the Study

When this subject was chosen, four research directions were inspired. They are researches in Semantic Web, Web services, Semantic Web Services, and AI-planning. The above directions have been considered as the scope of the research, as follows:

- Firstly, this research is inspired by state-of-the-art Web services technologies which are being investigated in academia and industry (like, Web Services Description Language (WSDL) [4], Universal Description, Discovery, and Integration (UDDI) [45], and Simple Object Access Protocol (SOAP) [5]). These technologies can provide proper languages and frameworks for discovery, selection, composition, mediation, and invocation of Web services. The Web services are described in section 2.1.

- Second, this research is inspired by the Semantic Web [18] which can improve the interoperability problems between Web applications. Normally, such problems are realized by some ontology languages, e.g. OWL [39] which is an XML-based language. Using this technology, Web services are allowed to be in agreement with
concepts of their own terminologies which are used during all processes of Web services like discovery and invocation. The Semantic Web is described in section 2.2.

- Moreover, the third resource for the proposed approach is Semantic Web services which are the most prominent technologies in the fourth generation of the World Wide Web. The Semantic Web Services are described in section 2.3.

- At last, this research was inspired by the approaches based on AI-planning. As discussed in section 1.2, due to the possibility to express preconditions and effects of Web services as logical conditions, several Web service languages describe services in ways which are influenced by AI-planning. AI-planning-based approaches are described in section 3.1.1.

1.5 Significance of the Study

Currently, there are existing many platforms to realize Web services technology, such as BPWS4J [41], .NET [44], Web Sphere [43], and AXIS [42]. The problem which is raised by those platforms is lack of suitable tools to support dynamic Web service composition such that, if no atomic Web service does satisfy the user’s goal, the process of Web service composition might be done manually.

As mentioned before, several different studies on Web services are trying to define proper languages and platforms for Web service composition such as BPEL4WS [7], and also to maintain semantic representations of the available services over the Web like, WSMO [9] and OWL-S [20].

Nevertheless, the process of composition of Web Services still can be considered as a complicated task due to the following reasons [10]:
Recently, the number of available Web services is increasing dramatically, such that searching on huge repositories might be expected in future.

Furthermore, many Web services are establishing and updating over the Internet. Therefore, before the process of Web service composition, such updated information must be detected.

In addition, different organizations are developing different Web services. In order to describe such services, different concept models might be used. Nevertheless, lack of a standard language to describe and evaluate such services is another reason that increases the complexity of Web service composition process.