WIND ASSISTED PROPULSION SYSTEM FOR FUEL SAVING

HAMRAN BIN HARUN

This dissertation is submitted
in fulfillment of the requirement for the
Master Degree of Mechanical Engineering
(Marine Technology)

Faculty of Mechanical Engineering
University of Technology Malaysia

DECEMBER 2011
Dedicated to my family, and my friends
ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my supervisor, Prof. Dr. Abd. Saman Abd. Kader and Assoc. Prof. Dr. Omar B. Yaakob for his precious continuous guidance, support and encouragement throughout my study. His ideas, suggestions and comments have given me the courage to handle this study and formed a valuable part of this study.

I would also like to express my gratitude to those who have contributed to this study especially beloved family for valuable support throughout this study.

Finally, I would like to thank all supervisor and friends, who involved directly and indirectly in the accomplishment of this study.

Thank you.
ABSTRACT

Increasing fuel prices and strong environmental concerns have changed the landscape for the shipping industries. The changing, competitive environment has rekindled an interest in improving ship efficiency and performance sustainability. As MISC Berhad has a vision to become a world class player in the shipping industry, alternative ways have to be discovered for ensuring a competitive edge in the shipping business. Wind assisted ships are to be considered as an alternative way to reduce fuel consumption and damage to the environment. The aim of this study is to develop a wind assisted propulsion system and to assess its techno economic feasibility on a specific vessel and a selected route. Chemical carrier tankers from the MT Bunga Melati series were chosen and the routes selected were between the Middle East, Singapore and the Far East. For this study, actual data collected was for a period of more than two years. This data was taken from the daily noon reports of the ship master which are reports to his company on a daily basis during a ship’s voyage. The data consists of the main ship operational parameters as well as the wind speed and directions. A kite was designed and the propulsive forces developed in the voyages throughout the year were estimated. Finally, the economic assessment was carried out using payback period and Net Present Value criteria. The calculations showed a payback period of 10 years while Net Present Value was strongly positive indicating a profitable investment. The effect of using the kite on CO2 emission was determined using Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) developed by the International Maritime Organisation. Both indicators showed a positive reduction, indicating that the use of the kite is not only profitable economically but also improves the ship CO2 reduction performance.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TOPIC</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>SYMBOLS AND ABBREVIATION</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background 1
1.2 Statement of Problem 2
1.3 Objective 3
1.4 Scope 3
1.5 Outline of Thesis 3

CHAPTER 2 LITERATURE REVIEW

2.1 Fuel Saving and Emissions 5
2.2 Wind Assisted Ship
2.2.1 Flettner Rotor 7
2.2.2 Aerofoil (Wing sail) 8
2.2.3 Kites 10
2.2.4 Soft Sail 11
2.2.5 Wind Turbine 13
2.3 Selection of Wind Assisted Propulsion System 14
2.4 Reducing Air Pollution From Ship 16
2.5 The Use of Kite for Wind Assisted Ship 18
2.6 Investment Appraisal 22
2.6.1 Methods of Investment Appraisal 22
2.6.1.1 Payback 22
2.6.1.2 Annual or Average rate of Return (ARR) 23
2.6.1.3 Net Present Value (NPV)
or Discounted Cash Flow 24
2.6.1.4 Internal Rate of Return (IRR) 25
2.7 Energy Efficiency Design Index (EEDI) 26
2.8 Energy Efficiency Operational Index (EEOI) 27

CHAPTER 3 METHODOLOGY

3.1 Overview 28
3.2 Selection of Ship 30
3.2.1 Ship Particular 30
3.3 Route of Study 31
3.3.1 Weather in Route 31
3.3.1.1 South Asian Monsoon 31
3.3.1.2 East Asian Monsoon 32
3.3.2 Wind Condition 32
3.4 Cost Estimation 34
3.5 Investment Appraisal Technique 33
3.6 CO2 and Energy Efficiency Design Index (EEDI) Calculation 35
3.7 Energy Efficiency Operational Index (EEOI) Calculation 35

CHAPTER 4 THEORY

4.1 Sail Theory 36
4.1.1 Basis Concept of Sailing 36
4.2 Airfoil Concept 43
4.3 Definitions of Lift and Drag 44
4.3.1 Lift Force 45
4.3.2 Drag Force 46
4.4 Force analysis on Kite 47
4.4.1 True and Apparent Wind 49
4.4.2 Wind Speed 50
4.5 Propulsion Force 51
4.6 Kite Dimension 51
4.6.1 Angle of Attack 52
4.7 Control System and Routing 53
4.8 Ship Resistance 55
4.9 Propulsion Estimation 56

CHAPTER 5 RESULTS AND DISCUSSION

5.1 Route Analysis 59
5.1.1 Route Result 61
5.2 Wind Result 67
5.3 Propulsion Result 69
5.3.1 Relationship between angle of attack with C_l/ C_D 70
5.3.2 Propulsion force generated at selected route 71
5.4 Case Study 75

5.5 Case Study Result 76
5.5.1 Fuel Savings 78
5.5.2 CO2 Savings 78
5.5.3 Calculated Value Attained for Energy Efficiency Design Index (EEDI) 79
5.5.4 Calculated Energy Efficiency Operational Index (EEOI) 81

5.6 Investment Appraisal Results 83
4.4.1 Payback Method 83
4.4.2 Net Present Value (NPV) Method 85

5.7 Discussion 86

CHAPTER 6 CONCLUSIONS AND RECOMMENDATION

6.1 Conclusions 89
6.2 Recommendation 90

REFERENCES 92

APPENDICES

Appendix A Example of Fuel Oil Monitoring System
Appendix B Ship Power Curve
Appendix C Route Analysis
Appendix D Propulsion Result
Appendix E Case Study
Appendix G Ship Particular
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO OF FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Artist impression of the E ship from Enercon</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Type of wing sail vessel</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Skysails Kite System</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>General plans “Dynaship”</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Sail-assisted tanker “Shin-Aitoku-Maru”</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Sail-equipped fishing boat “Enoshima-Maru”</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Wind turbine</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Relative fuel saving, 350 meter line</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Oil prices from year 1999 to 2008</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Power diagram wind</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>Direction of wind</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Methodology flow chart</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample of ship daily Noon Report</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Combination between lift and drag</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Lift and Drag relationship</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Force on sail</td>
<td>40</td>
</tr>
<tr>
<td>4.4</td>
<td>Forces of water acting on a centreboard</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Force acting on a sail</td>
<td>41</td>
</tr>
<tr>
<td>4.6</td>
<td>Drift of a boat</td>
<td>42</td>
</tr>
<tr>
<td>4.7</td>
<td>Three forms of wind</td>
<td>43</td>
</tr>
<tr>
<td>4.8</td>
<td>NACA airfoil geometrical construction</td>
<td>44</td>
</tr>
<tr>
<td>4.9</td>
<td>Aerodynamic forces</td>
<td>45</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>Free body diagram of kite</td>
<td>49</td>
</tr>
<tr>
<td>4.11</td>
<td>True wind and apparent wind</td>
<td>50</td>
</tr>
<tr>
<td>4.12</td>
<td>Propulsion force acting on the ship</td>
<td>51</td>
</tr>
<tr>
<td>4.13</td>
<td>Cross section of the kite</td>
<td>52</td>
</tr>
<tr>
<td>4.14</td>
<td>Variation of C_L/C_0 ratio with Angle of Attack</td>
<td>53</td>
</tr>
<tr>
<td>4.15</td>
<td>Control system of the skysail technology</td>
<td>54</td>
</tr>
<tr>
<td>4.16</td>
<td>Ship resistance curve</td>
<td>55</td>
</tr>
<tr>
<td>4.17</td>
<td>Overview of process to determine Propulsion Force</td>
<td>57</td>
</tr>
<tr>
<td>4.18</td>
<td>Overview of process to determine power saving</td>
<td>58</td>
</tr>
<tr>
<td>5.1</td>
<td>Route from Singapore to Middle East – 3 sector</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Route from Singapore to Taichung (Far East) – 2 sector</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>Wind Speed on Monthly Average (Singapore to Jeddah)</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>Wind Speed on Monthly Average (Jeddah to Singapore)</td>
<td>64</td>
</tr>
<tr>
<td>5.5</td>
<td>Wind Speed on Monthly Average (Singapore to Taichung)</td>
<td>65</td>
</tr>
<tr>
<td>5.6</td>
<td>Wind Speed on Monthly Average (Taichung to Singapore)</td>
<td>66</td>
</tr>
<tr>
<td>5.7</td>
<td>Wind speed based on months for sector 1 (Singapore to Jeddah route)</td>
<td>68</td>
</tr>
<tr>
<td>5.8</td>
<td>Relationship between angle of attack with C_L/C_0</td>
<td>70</td>
</tr>
<tr>
<td>5.9</td>
<td>Propulsion force distribution (Singapore to Jeddah route)</td>
<td>71</td>
</tr>
<tr>
<td>5.10</td>
<td>Propulsion force distribution (Jeddah to Singapore route)</td>
<td>72</td>
</tr>
<tr>
<td>5.11</td>
<td>Propulsion force distribution (Singapore to Taichung route)</td>
<td>73</td>
</tr>
<tr>
<td>5.12</td>
<td>Propulsion force distribution (Taichung to Singapore route)</td>
<td>74</td>
</tr>
</tbody>
</table>
5.13 CO2 Savings versus Years
LIST OF TABLE

<table>
<thead>
<tr>
<th>NO OF TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Proposed EEDI reduction schedule</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Ship particulars of the MT Bunga Melati series</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Route sectors</td>
<td>62</td>
</tr>
<tr>
<td>5.2</td>
<td>Ship data converted to wind speed using the Beaufort scale</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Wind direction based on ship heading</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Case Study- Voyage Days</td>
<td>75</td>
</tr>
<tr>
<td>5.5</td>
<td>Case study- Trade Pattern</td>
<td>76</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary of fuel savings</td>
<td>77</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary of Case Study</td>
<td>78</td>
</tr>
<tr>
<td>5.8</td>
<td>Main Engine data for calculate EEDI</td>
<td>80</td>
</tr>
<tr>
<td>5.9</td>
<td>Auxiliary Engine data for calculate EEDI</td>
<td>80</td>
</tr>
<tr>
<td>5.10</td>
<td>Innovative energy data for calculate EEDI</td>
<td>81</td>
</tr>
<tr>
<td>5.11</td>
<td>EEOI (without kite)</td>
<td>82</td>
</tr>
<tr>
<td>5.12</td>
<td>EEOI (with kite)</td>
<td>82</td>
</tr>
<tr>
<td>5.13</td>
<td>Summary of detail cost</td>
<td>83</td>
</tr>
<tr>
<td>5.14</td>
<td>Simple Payback Method</td>
<td>84</td>
</tr>
<tr>
<td>5.15</td>
<td>Discounted Payback Method</td>
<td>84</td>
</tr>
<tr>
<td>5.16</td>
<td>Operational NPV</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>NO OF APPENDIX</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Example of Fuel Oil Monitoring System</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Ship Power Curve</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Route Analysis</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Propulsion Result</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Case Study</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Ship Particular</td>
</tr>
</tbody>
</table>

xv
SYMBOLS AND ABBREVIATION

A area of kite
AR Area ratio
C_D drag coefficient
C_L lift coefficient
d diameter
F Force
D Drag Force
L Lift Force
V_T True wind speed
V_A Apparent wind speed
V_s Ship Speed
l Length
P Pressure
LOA Length of overall
LBP Length between perpendicualrs
W Weight
t Time
V Velocity
R_e Reynolds Number
\(\rho \)
\(V_A \)
\(V_T \)
\(V_S \)
\(\beta \)
\(\theta \)
\(W(z) \)
\(u_{ref} \)
\(z_{ref} \)
\(z_0 \)
\(R_T \)
\(P_E \)
\(P_D \)
\(P_B \)
\(\eta_p \)
\(\eta_O \)
\(\eta_s \)
\(F_p \)
\(q \)
\(n \)
\(R_n \)

Specific density (of air)
Apparent wind speed
True wind speed
Vessel speed
Apparent wind angle
True wind angle
Wind speed at altitude \(z \) above (sea) surface
Wind speed at reference level
Reference level (10m)
Surface roughness (depending on wave height)
Total resistance
Effective power
Delivered power
Brake power
Propeller efficiency
Open water test propeller efficiency
Shaft efficiency
Propulsive force
Dynamic pressure
Number of years
Net cash flow
\(e \)
Yearly cost increment

\(i \)
Discount rate

\(CF \)
Non-dimensional conversion factor between fuel consumption measured in g and CO2 emission also measured in g based on carbon content. The subscripts \(ME_i \) and \(AE_i \) refer to the main and auxiliary engine(s) respectively.

\(V_{ref} \)
Ship speed, measured in nautical miles per hour (knot), on deep water in the maximum design load condition.

\(Capacity \)
Deadweight for dry cargo carriers, tankers, gas tankers, Containerships, RoRo cargo and general cargo ships, gross tonnage for passenger ships and RoRo passenger ships, and 65% of deadweight for container ships.

\(Deadweight \)
Means the difference in tonnes between the displacement of a ship in water of relative density of 1,025 kg/m3 at the deepest operational draught and the lightweight of the ship.

\(P \)
Power of the main and auxiliary engines, measured in kW. The subscripts \(ME \) and \(AE \) refer to the main and auxiliary engine(s), respectively.

\(SFC \)
Certified specific fuel consumption, measured in g/kWh, of the engines.

\(f_j \)
Correction factor to account for ship specific design elements.

\(F_w \)
Non-dimensional coefficient indicating the decrease of speed in representative sea conditions of wave height, wave frequency and wind speed.
Availability factor of each innovative energy efficiency technology.

FC (Fuel consumption) is all fuel consumed for the period in question

C_{carbon} CO2 emission per tonne of fuel calculated from the carbon content of the fuel used (e.g. HFO)

m_{cargo} Mass of transported cargo in metric tonnes

D (distance sailed) is the actual distance sailed in nautical miles
CHAPTER 1

INTRODUCTION

1.1 Background

Increasing fuel prices and strong environmental concerns have changed the competitive landscape of the shipping industry today. This present environment has rekindled an interest in improving efficiency and sustainability in the performance of ships. To meet with the changing commercial markets and the economic environment, there is the requirement for new vessel designs with more flexibility, longer lifespan, and with more energy efficient operating systems which will be highly cost effective.

The need to minimize operating costs is paramount in order to be competitive. The current oil fuel based energy source, at recent high prices, can result in fuel costs as high as 50 percent of the operating costs [1]. Alternative energy sources for power generation such as LNG, fuel cells, nuclear, wind assisted ships are now being considered by many shipping companies. Apart from the hull and propulsion efficiency, optimization of ship running costs and quality of services depend on the performance of the operational systems and processes such as voyage management, loading and maintenance.
As the MISC vision is to become a world class player in the shipping industry, alternative ways have to be discovered for ensuring a competitive edge in the shipping business. Such development procedures are illustrated in Appendix A. These procedures range from fuel oil consumption monitoring, voyage management and propeller polishing for increasing fuel efficiency and to reducing fuel consumption [10]. However there is no alternative study that has been done within the MISC group for reducing dependence on fossil fuel. Wind assisted shipping is to be considered as an alternative way to reduce fuel consumption and prevent further damage to the environment. Earlier studies have shown that with the current wind assisted system technology, annual savings of between 10 to 30 percent of fuel consumption can be expected [31].

This study will focus on the feasibility of a wind assisted system to be applied onboard a MISC ship. The wind assisted systems generate thrust from the wind and thereby reduce dependence on fossil fuel and main engine operation.

1.2 Statement of Problem

Maritime Shipping is nearly dependent on fuel oil. In the last 10 years, crude oil prices rose annually by 10 percent on the average and in 2009, a high upward movement has been observed. This development, places tremendous financial pressure on the shipping industry as the fuel oil cost accounts for more than half of a ship’s operating cost. The International Energy Agency (IEA) has projected an average oil price of USD 200 per barrel by 2013. According to the IEA report the main reason for this price increase is the continuing decline in oil production rates by about 6-7 percent annually and faces a growing demand of 1 percent per year. Soon, shipping companies will be forced to reduce their sulfur emissions which are already damaging the environment at present. The maritime industry is responsible for almost 4 percent of the worldwide CO₂ emission. The only way to reduce the emission is by reducing the
burning of fuel. The way out of this crisis is by opening up alternative energy sources for the ships and this makes the use of free wind power more attractive.

1.3 Objective

The objective of this study is to develop a wind assisted propulsion system and to assess its techno economic feasibility.

1.4 Scope

The scope of this study covers the wind assisted propulsion system, the route and ship selection, the collection and compilation of wind data from noon reports, analyses of wind data of chosen routes, the development of wind assisted propulsion system, the calculation of power generated by wind and expected fuel savings, the assessment of techno economics with the application of the wind assisted propulsion system and finally the recommendations for further research work.

1.5 Outline of Thesis

This thesis comprises five chapters. Chapter one will cover the introduction and background of the study, the objective to study the wind assisted propulsion system and lastly the scope of the study. Chapter two covers the literature reviewed. There are three main parts in this chapter. Part one discusses the contribution of the wind assisted propulsion system to fuel saving and the effect of releasing CO₂ into the atmosphere by the shipping industry. The second part, discusses the previous study conducted for the wind assisted propulsion system and the application and advantages of the wind assisted propulsion system. In the third part, the kite sail theory and its application on the vessel are discussed. Chapter three covers the methodology and selection of the
vessels, the routes of study, method on actual data collection from the vessel, kite
dimensions, cost estimation, a case study of a ship and lastly an investment appraisal
will be determined. Chapter four contains the main discussion on the route analysis and
the wind analysis for the launching of kites. This chapter also discusses the propulsion
force derived by applying a kite on the vessel. By generating a case study, the total fuel
savings on a chosen route can be determined as well as the emission of CO₂ can be
reduced and furthermore an investment appraisal will be also discussed. Finally, in
Chapter five, the conclusion on the objective of the study will be explained in brief and
recommendations and suggestions for the improvement of the study or future research
will be provided.