RELIABILITY ASSESSMENT FOR LIQUEFIED NATURAL GAS SHIP’S DISTRIBUTED CONTROL SYSTEM

ARULHAIZAL BIN ADAM HAMZAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical – Marine Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

OCTOBER 2011
To my beloved wife Munirah and my lovely daughters Alya and Bahi
ACKNOWLEDGEMENT

Preparing this thesis is a journey that I will never forget in my life. The knowledge will not be discovered if we do not search for it. Not only that I have gained new knowledge, the biggest lesson learned is self-discovery.

This thesis will not be completed without the help of following person. My sincere appreciation goes to my main supervisor Associate Professor Dr. Omar bin Yaakob for believing in me and his guidance. I am also thankful to my co-supervisor Prof Saman Abd Kader and all UTM Marine Technology lecturers for their guidance, support and inspiration.

I am also indebted to MISC Berhad for funding my study. En Nordin Mat Yusoff, a visionary who made all this happened. I am also indebted to my colleagues who were together with me in this special program for their support, views and tips.
ABSTRACT

Distributed Control System (DCS) is installed onboard liquefied natural gas (LNG) ships to ensure safety and efficiency during all modes of operations. The aim of this paper is to establish reliability assessment for ship’s DCS and measure the probability of failure for DCS equipment by using field failure data. DCS components failure data of four series of LNG ships was taken from the company maintenance database. Reliability of individual component was calculated by fitting the two parameter Weibull model to failure data. The shape parameter, β and scale parameter, η are deduced from linear regression and subsequently the reliability for each DCS component can be calculated. The reliability block modelling was developed and then the overall reliability of DCS system of a ship can be calculated by substituting each individual component reliability into the equation of total system reliability. There are five main components of DCS i.e. FTA, IO, NIM, CPU and HIS. The failure of IO and HIS made up 88% of total failure. Ship A and B having large number of failures with 36% and 46% each. The linear regression for all ships showing good fitting as the R^2 value is all above 0.8 even for small sample data. IO on all ships was showing short lifetime with low η value of about 10,000 hours while HIS was even lower with 3,000 to 8,000 hours. Other component η value was minimum 13,000 hours. The total reliability for Ship A, B, C and D was 53%, 0.1%, 2% and 6% respectively. Ship A reliability at this point of time is showing the highest reliability compared to all other ships. Other ships’ low reliability was due to either high failure rate of one of the components or early infant failure. It can be concluded that reliability of DCS are not influenced by the number of component failures. Even though Ship A has the most number of component failures but the reliability is the highest. The DCS system total reliability depends on the failure rate, the criticality of the components whether connected serially or parallel and the date of when the last time the component was replaced.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background of Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of the Study</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Study</td>
<td>5</td>
</tr>
</tbody>
</table>
1.5 Importance of Study 6
1.6 Limitations of Study 6
1.7 Thesis Organization 7

2 LITERATURE REVIEW 8

2.1 Introduction 8
2.2 Definition of DCS 9
2.3 DCS and Application Onboard LNG Ship 11
 2.3.1 DCS Components 14
2.4 Failure Mechanism of DCS 16
2.5 Reliability Definition 17
2.6 Reliability Bathtub Curve 18
2.7 Data Failure Rate and Mean Time Between Failure (MTBF) 19
2.8 Reliability Distributions 21
 2.8.1 The Exponential Reliability Distribution 21
 2.8.2 Weibull Reliability Distribution 23
 2.8.3 Fitting Weibull Model to Failure Data 25
2.9 Reliability Block Modeling 27
 2.9.1 Serial Reliability Model 27
 2.9.2 Parallel Reliability Model 28
2.10 Examples of Application of Reliability Modeling 30
 2.10.1 Classification and Calculation of
Primary Failure Modes in Bread Production Line

2.10.2 Failure Probabilistic Model of CNC Lathes

2.10.3 Reliability Analysis of An Automated Pizza Production Line

2.10.4 Reliability Analysis of Aeroplane Tyres

2.11 Summary of Literature Review

3 METHODOLOGY

3.1 Introduction

3.2 Data Collection

3.3 Reliability of Individual Component

3.4 Reliability Block Diagram and Reliability Calculation

4 RESULTS

4.1 Introduction

4.2 General Overview of the Data

4.3 Ship A - Linear Regression and Reliability Results for DCS Components

4.4 Ship B - Linear Regression and Reliability Results for DCS Components

4.5 Ship C - Linear Regression and Reliability Results for DCS Components

4.6 Ship D - Linear Regression and Reliability
Results for DCS Components

5 DISCUSSION

5.1 Introduction 64
5.2 Discussions on General Overview of the Collected Data 65
5.3 Discussion on Ship A - β and η Parameter, Plot of Reliability, Failure Rate and Probability Density Function Results 67
5.4 Discussion on Ship B - β and η Parameter, Plot of Reliability, Failure Rate and Probability Density Function Results 69
5.5 Discussion on Ship C - β and η Parameter, Plot of Reliability, Failure Rate and Probability Density Function Results 71
5.6 Discussion on Ship D - β and η Parameter, Plot of Reliability, Failure Rate and Probability Density Function Results 73
5.7 Discussion on η Scale Parameter Results for All Ships 74
5.8 Discussion on Reliability Results for All Ships 76

6 CONCLUSIONS

6.1 Conclusion 77
6.2 Recommendation for Further Work 80

REFERENCES

Appendices A-D
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>LNGC Data Summary</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample of format analysis, Anwar et al.(1996)</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Number of Failure Recorded</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Ship A – Comparison of β and η value</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Ship B – Comparison of β and η value</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Ship C – Comparison of β and η value</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Ship D – Comparison of β and η value</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>All Ships, η Scale Parameter</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Reliability Results</td>
<td>76</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Increase of LNGC Fleet, ABS(2005)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Typical DCS Architecture, SHI (2005)</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>DCS Mimic</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Bathtub Curve</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Exponential Reliability Distribution</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Serial Reliability Model</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Parallel Reliability Model</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology Flowchart</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>AMOS Screenshot</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Reliability Block Diagram of DCS</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Simple Reliability Block Diagram of DCS</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Number of Failure Recorded</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of Total Component Failure</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Ship A – IO Linear Regression</td>
<td>47</td>
</tr>
</tbody>
</table>
4.4 Graph of Ship A, IO $- R(t), f(t), A(t)$ Against Time
4.5 Ship A – HIS Linear Regression
4.6 Graph of Ship A, HIS $- R(t), f(t), A(t)$ Against Time
4.7 Ship B – FTA Linear Regression
4.8 Graph of Ship B, FTA $- R(t), f(t), A(t)$ Against Time
4.9 Ship B – IO Linear Regression
4.10 Graph of Ship B, IO $- R(t), f(t), A(t)$ Against Time
4.11 Ship B – CPU Linear Regression
4.12 Graph of Ship B, CPU $- R(t), f(t), A(t)$ Against Time
4.13 Ship B – HIS Linear Regression
4.14 Graph of Ship B, HIS $- R(t), f(t), A(t)$ Against Time
4.15 Ship C – FTA Linear Regression
4.16 Graph of Ship C, FTA $- R(t), f(t), A(t)$ Against Time
4.17 Ship C – IO Linear Regression
4.18 Graph of Ship C, IO $- R(t), f(t), A(t)$ Against Time
4.19 Ship C – CPU Linear Regression
4.20 Graph of Ship C, CPU $- R(t), f(t), A(t)$ Against Time
4.21 Ship C – NIM Linear Regression
4.22 Graph of Ship C, NIM $- R(t), f(t), A(t)$ Against Time
4.23 Ship C – HIS Linear Regression
4.24 Graph of Ship C, HIS $- R(t), f(t), A(t)$ Against Time
4.25 Ship D – IO Linear Regression
4.26 Graph of Ship D, IO $-R(t), f(t), \lambda(t)$ Against Time 62
4.27 Ship D – HIS Linear Regression 63
4.28 Graph of Ship D, HIS $-R(t), f(t), \lambda(t)$ Against Time 63
5.1 Parts Failure Fraction 65
5.2 Ship A, β Shape Parameter 68
5.3 Ship A, η Scale Parameter 69
5.4 Ship B, β Shape Parameter 70
5.5 Ship B, η Scale Parameter 71
5.6 Ship C, β Shape Parameter 72
5.7 Ship C, η Scale Parameter 72
5.8 Ship D, β Shape Parameter 74
5.9 Ship D, η Scale Parameter 74
5.10 All Ships, η Scale Parameter 75
LIST OF ABBREVIATIONS

\[\lambda \] - Failure Rate
\[\beta \] - Shape parameter
\[\eta \] - Scale parameter (Characteristics life)
ABS - American Bureau of Shipping
AMOS - Application and Maintenance Operating System
CPU - Centralized processor unit
DCS - Distributed Control System
\[f(t) \] - Probability density function
FCS - Field Control Station
FTA - Field Terminal Adaptor
HIS - Human Interface Station
IO - Input Output
LNG - Liquefied Natural Gas
LNGC - LNG Carrier
MISC - Malaysia International Shipping Corporation
MTBF - Mean Time between Failure
NIM - Network Interface Module
PC - Personal Computer
\[Q(t) \] - Unreliability
\[R_s \] - System reliability
\[R(t) \] - Reliability
SCADA - Supervisory Control and Data Acquisition
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ship A - Linear Regression and Reliability Calculation</td>
</tr>
<tr>
<td>B</td>
<td>Ship B - Linear Regression and Reliability Calculation</td>
</tr>
<tr>
<td>C</td>
<td>Ship C - Linear Regression and Reliability Calculation</td>
</tr>
<tr>
<td>D</td>
<td>Ship D - Linear Regression and Reliability Calculation</td>
</tr>
</tbody>
</table>
1.1 General Introduction

Distributed control system (DCS) is a microprocessor-based control and monitoring system which is normally installed in complex chemical plant, offshore platform, drill ships etc. In commercial ship application, it is provided onboard Liquefied Natural Gas (LNG) carriers to handle the complex boiler steam, boil off gas system and miscellaneous machinery control in ensuring that the ship will operate safely and with minimum intervention by the operator. Taylor (1987) explained that it is the ultimate goal to have every possible operation controlled from centralized control room. Onboard LNG ships, DCS equipment is important in ensuring ship’s smooth operation during normal sea going, loading and discharging operation.

DCS is where the entire system of controllers is connected by networks to a centralized control room where operator will monitor and control the plant through several workstation monitor. In short, DCS is the brain of a ship. The plant starts up will
be brought up manually by experienced personnel. Once the plant is stable, the control mode can be changed to automatic mode and DCS will ensure that the operation is kept steady by controlling valve in order to keep the flow, pressure or level within the desired value. Zivi (2002) stated that DCS reliability is important in ensuring safe operation and continuity of control. Currently, there is no method to measure DCS reliability.

Neubeck (2004) states that reliability engineering is a field that got its start during the NASA space program in year 1960 and continue to exist today. To name a few application, it is used in civil engineering and bridge design, product reliability testing and in asset life extension study known as RAM (Reliability, Availability and Maintainability). Reliability method can be used as an effective tool to measure current condition of a system or equipment.

1.2 Background of Problem

The first LNG carriers (LNGC) were built in late sixties and since then have increase in numbers. The increase of LNGC fleet worldwide is shown as Figure 1.1. From the graph, currently there are about 70 LNGC that is more than 20 years old.
Lifetime of machinery onboard ship, such as diesel generator, pump, turbine etc is normally up to 20 years. Unlike any other commercial vessels, most of LNG ships operate up to 40 years plus due to the high initial capital cost. To further serve for the next 20 years, the ship must go through refurbishment process. For LNG ship, this option is adopted since the price of new ship is almost 6 to 7 times the refurbishment cost. During refurbishment, major works such as cargo tank strengthening, main diesel generator replacement, boiler & main turbine assessment etc will be done to extend the ships life.

DCS is also no exception. Replacement, reuse or upgrade of DCS equipment is carried out after 20 years in service due to parts obsolescence, increase maintenance cost or unsatisfactory after sales support. On board ship, the environment is cruel to the equipment, where vibration, humidity and temperature can contribute to premature failure of the components. The cost of replacing DCS contributes up to 6% of the total cost of ships life extension program. Thus it is imperative that the decision be taken carefully.
DCS total failure so far has never been heard of. However, it is known due to discontinued production, difficulty in getting the spare parts, defective parts because of aging will relate to operation constraint and the scenario can get worse when spares are fully utilized and there is no capability to repair defective components. When this happen, it is like a time bomb if any single failure of DCS components occur.

Thus it is important to assess current DCS status to advise maintenance strategy that need to be adopted. Reliability assessment method need to be developed in order to assess the current status of DCS. Currently no failure analysis or assessments of the reliability of DCS system have been carried out. The decision to renew, reuse or upgrade relies mainly on the Maker’s recommendation. This sometimes led to premature renewal or unexpected failure, causing downtime. A better way of assessing the need for renewal or replacement need to be developed. This project proposes a method based on reliability engineering. Reliability method which originate from reliability engineering using field failure data is hope to supplement the shipowner on status of DCS equipment if not accurately advise them what to do next.

The research problems can be summarized as follows;

i) Currently there is no method to assist decision making of whether to renew, reuse or upgrade DCS system after 20 years in service. How to establish reliability assessment for ship’s DCS?

ii) How do we measure the probability of failure for DCS component?
1.3 Objectives of the Study

The objectives of this research are to;

i) Develop a reliability assessment method of DCS system for LNG ships in operation by using field component failure data utilizing reliability engineering method

ii) Calculate reliability of the system

1.4 Scope of Study

This study puts emphasis on using of mathematical calculation and reliability engineering to establish reliability assessment method. The data of DCS component failure was taken from four (4) series of LNG ships of a global shipping company. LNG ship’s DCS components failure data is obtained from onboard maintenance and purchase software which is known as Application and Maintenance Operating System (AMOS). The software combines planned maintenance with spare parts control and integrates fully with AMOS purchase. Information is shared between ships and the office to allow on-board personnel to plan and manage maintenance and stores.

Based on the structure of DCS component, reliability block modeling is done. Failure rate, MTBF (mean time between failure) and reliability for each component shall be calculated. There are four main reliability distributions namely exponential, binomial, poisson and Weibull. Binomial and poisson are only suitable for
discrete distributions such as rocket launching failure therefore only exponential and Weibull are explained. Correct reliability distribution shall be selected. Based on this, reliability of the system is calculated.

1.5 Importance of Study

This study basically showed on how to model DCS system reliability and evaluate it based on field failure data. It is expected that there is availability of 6 to 7 years period of data.

The result from reliability analysis can be used by ship owner to enhance their decision making on whether to upgrade, purchase critical parts or revamp the whole system. This would benefit the shipowner rather than taking Maker’s recommendation solely and making wrong decision.

In the end, the ultimate goal of having a more reliable DCS system onboard can be achieved.

1.6 Limitations of Study

The limitations of this study are that external factor such as ambient temperature, trading route, thermal effect and software failure is not considered. The DCS equipment reliability assessment is also limited up to the terminal connection of DCS cabinet. The
sensors, control valve and control system is not part of the study. This is primarily due to the fact that modeling all these would be too large an effort to undertake.

1.7 Thesis Organization

Chapter One will consist of the problem background, research objectives, scope and importance of study and limitations. Chapter Two covers literature review, which discusses on DCS definitions, history, reliability engineering and method. Chapter Three presents the methodology in developing reliability block model and reliability calculation. Chapter Four presents the results of field failure data and reliability calculation. Chapter Five discusses on the results. Chapter Six concludes and recommends future work.
REFERENCES

