KINETIC STUDY OF CHLOROBENZENE DEGRADATION BY ISOLATED MICROBES FROM WASTEWATER

NOOR HAFIZA BINTI HARUN

UNIVERSITI TEKNOLOGI MALAYSIA
KINETIC STUDY OF CHLOROBENZENE DEGRADATION BY ISOLATED MICROBES FROM WASTEWATER

NOOR HAFIZA BINTI HARUN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical & Natural Resources Engineering
Universiti Teknologi Malaysia

FEBRUARY 2008
To my beloved mother Siti Khalijah Hj Ahmad and not forgetting my family Hasbul Khairi, Khairul Helmi, and Mohd Akmal who gave me the inspiration and encouragement in completing my thesis
ACKNOWLEDGEMENTS

‘With The name of Allah, The Most Gracious and The Most Merciful. Selawat and salam to the Prophet Muhammad S.A.W’. Alhamdulillah, thank to Allah S.W.T. because with His help I’ve successfully completed my thesis. I would like to take this opportunity to express my sincere thanks and appreciation to following persons and organization that have directly or indirectly given generous contribution towards the success of this research.

Most of all, I want to express my gratitude to my advisor, Assoc. Prof. Firdausi Razali who has helped me from the beginning to the end of the course of my studies. He has offered a lot of advice and assistance through in completion my work over a long period of time. I have no idea what I would do without him. Besides, I also want to thank to technicians in Bioprocess Lab, FKKKSA, UTM for their cooperation and guidance especially to Pn. Siti Zalita, En. Muhammad, En. Yaakob, and En. Malek.

I am also totally in debt to the UTM-PTP, SPS, UTM Skudai for scholarship of postgraduate students and UTM Short Term Grant (vote 75200) for financially supported this research. I gratefully express my thanks to my fellow friends especially Nozieana, Norhani, Nurul Asyikin, Norhana, Amelia, Siti Kholijah, Sharifah, Dayang, and Mailin by virtue of their helpfulness and motivations.

Finally, I wish to extend my deep appreciation to my lovely mother and family because of their financial assistance and loving support all along the way in finishing my study. Above all, I thank to Allah the Al Mighty one for His grace, mercy and guidance throughout my life.
ABSTRACT

The performance of microbial consortia from wastewater to degrade chlorobenzene (CB) was investigated. The consortia were initially exposed to high CB concentration (i.e. 0.2mg/L) for seven months in order to isolate the most dominant survivor(s). The two survivors were known as ‘Yellow Colony’ or YC, and ‘White Colony’ or WC. In batch culture, the maximum specific CB degradation rate, or Q_s (g CB degraded/g cell per hour) of WC, YC, mixture of WC and YC, were compared. The mixture of WC and YC gave three times greater Q_s than individual WC and YC, combined. This synergistic effect has never been reported so far. Study in a continuous culture indicated that nitrogen-enriched feed has resulted in greater critical dilution rate, D_c (i.e. 0.11h$^{-1}$) than the unsupplemented one (i.e. 0.08h$^{-1}$). This proved that the nitrogen limiting could not be ignored. It was also discovered that a short term (i.e. two days) adaptation of the consortia on CB prior to the degradation test in continuous cultures, as employed in some published works, was insufficient to produce significant result in this study. Data in batch study revealed that high aeration and temperature close to ambient (versus 37 °C) doubled the microbial growth in CB degradation. The batch study also showed that the CB degradation rate obeyed the first order kinetic. However, no degradation was witnessed below 0.0006 mg/L of CB. Below this threshold level, CB was almost undetectable by microbes. The outcomes of this study have not only proved the potential of employing microbes from wastewater to solve chlorobenzene contamination problem, but also provided useful parameter estimates for future up scaling works, or on site trial.
ABSTRAK

Potensi bagi konsortium mikrob dari air sisa buangan dalam penguraian klorobenzena (CB) telah dikaji. Mikroorganisma ini pada mulanya didedahkan pada kepekatan CB yang tinggi (iaitu 0.2mg/L) selama tujuh bulan untuk memencilskan species yang paling dominan. Dua spesies yang dipencilsikan dipanggil ‘Koloni Kuning’ atau YC, dan ‘Koloni Putih’ atau WC. Di dalam kajian kultur sekelompok, kadar maksima degradasi spesifik CB atau Q_s (g CB/g sel per jam) bagi WC, YC, dan campuran WC dan YC telah dibandingkan. Hasil menunjukkan campuran WC dan YC memberikan tiga kali ganda nilai Q_s berbanding hasil gabungan individu WC dan YC. Kesan sinergistik ini belum pernah dilaporkan setakat ini. Kajian dalam sistem selanjut pula menunjukkan kultur yang dibekalkan dengan nitrogen menghasilkan kadar kritikal pencairan, D_c (0.11h$^{-1}$) yang lebih tinggi berbanding kultur tanpa bekalan nitrogen (0.08h$^{-1}$). Ini membuktikan kadar penghadan substrat tidak boleh diabaikan. Didapati juga pengadaptasian konsortium mikrob kepada CB dalam jangkamasa pendek (dua hari) sebelum ujian penguraian dalam kultur selanjut sebagaimana yang telah diaplikasikan oleh beberapa kajian literatur, tidak memberikan keputusan yang signifikan dalam kajian ini. Data dari kultur sekelompok pula menunjukkan kesan pengudaraan yang tinggi dan suhu yang menghampiri persekitaran (berbanding 37ºC) mampu melipatgandakan pertumbuhan mikrob dalam penguraian CB. Kajian sekelompok juga menunjukkan kadar penguraian CB mematuhi hukum kinetik pertama. Walau bagaimanapun, data penguraian yang berlaku pada kepekatan dibawah paras 0.0006 mg/L. Pada bawah tahap ambang, CB hampir tidak dapat dikesan oleh mikrob. Hasil kajian ini bukan sahaja membuktikan kemampuan pengaplikasian mikrob dari air sisa buangan dalam menangani masalah pencemaran CB, malah mencadangkan parameter-parameter aplikasi yang berguna bagi tugasan menskala-naik atau percubaan di tapak industri.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Status of Thesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervisor’s declaration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Abstrak</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>List of Symbols</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>List of Appendices</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General Introduction
1.2 Research Background
1.3 Objectives and Scopes of Study
2 LITERATURE REVIEW

2.1 The Environmental Issues and Current Prospects 6
2.2 Legislation and Government Regulation 9
2.3 Halogenated Organic Compound Wastes 12
 2.3.1 Sources of Halogenated Compound Wastes 12
 2.3.2 Biological Aspect of Halogenated Compound Wastes 15
 2.3.2.1 Chlorinated Aliphatics 16
 2.3.2.2 Polycyclic Hydrocarbons 16
 2.3.2.3 Chlorinated Aromatic Compounds 17
2.4 Bioremediation Practices and Perspectives 19
 2.4.1 Bioremediation Systems and Processes 22
 2.4.2 Advantages and Disadvantages of Bioremediation 24
 2.4.3 Factors Affecting Bioremediation 25
 2.4.3.1 Environmental Factors 26
 2.4.3.2 Physical Factors 27
 2.4.3.3 Chemical Factors 28
 2.4.3.4 Microbiological Factors 29
 2.4.4 Microbial Systems of Bioremediation 30
 2.4.4.1 Microbial consortia 30
 2.4.4.2 Dominating organisms 31
 2.4.4.3 Methanogens 31
 2.4.4.4 Methanotrophs 32
 2.4.5 Growth and Biodegradation Kinetic 33
 2.4.5.1 Batch Culture 34
 2.4.5.2 Continuous Culture 36
2.5 Wastewater as Microorganisms Sources 37
 2.5.1 Residential Wastewater 38
 2.5.2 Nonresidential Wastewater 39
 2.5.3 Wastewater Quality Measurement 40
2.5.3.1 Biochemical Oxygen Demand (BOD) 40
2.5.3.2 Chemical Oxygen Demand (COD) 41
2.5.3.3 Total Organic Carbon (TOC) 41

2.6 Case Study: Chlorobenzene Waste 42
2.6.1 Chlorobenzene in the Environment 42
2.6.2 Sources of Chlorobenzene 43
2.6.3 Physical and Chemical Properties of Chlorobenzene 45
2.6.4 Chlorobenzene Health Effects 47
2.6.5 Regulatory Framework of Chlorobenzene 48
2.6.6 Microbial Degradation of Chlorobenzene 50
 2.6.6.1 Aerobic Cultivation 51
 2.6.6.2 Anaerobic Cultivation 52
 2.6.6.3 Continuous Cultivation 53
2.6.7 Species or CB Degrader from the Literatures 53
2.6.8 CB Determination by Current Studies 56

3 METHODOLOGY

3.1 Chemicals and Growth Medium 60
3.2 Source of Microorganisms 61
3.3 Experimental Methods 62
 3.3.1 Isolation of Microorganisms 62
 3.3.2 Characterizations of Isolates 64
 3.3.2.1 Gram Staining Method 64
 3.3.2.2 Biochemicals Tests 65
 3.3.3 Culture of Microorganisms (Batch Enrichment) 66
3.4 Biodegradation of Chlorobenzene Studies 68
 3.4.1 Growth in CB by Different Type of
Microbes: A Comparison

3.4.2 Continuous Mode Cultivation

- **3.4.2.1 Culture With and Without Nitrogen Supply**
- **3.4.2.2 Culture With and Without Prior Short-term Acclimatization**

3.4.3 Batch Mode Cultivation

- **3.4.3.1 Culture at Different Aeration Level**
- **3.4.3.2 Culture at Two Different Temperatures**
- **3.4.3.3 Culture at Different Initial CB Concentrations**

3.5 Analytical Procedures

- **3.5.1 Determination of CB Level**
- **3.5.2 Quantifying Microbial Growth**
 - **3.5.2.1 Optical Density (or OD)**
 - **3.5.2.2 Cellular Dry Weight**
- **3.5.3 Chemical Oxygen Demand (or COD) Analysis**

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Isolation and Identification of CB Degraders

4.3 Comparison Study by Different Microbes

- **4.3.1 Performance of Each Microbes in CB Degradation**
- **4.3.2 Growth and Degradation Kinetics by Each Microbes**

4.4 CB Degradation in Continuous Culture Condition

- **4.4.1 Effect of Supplied Nitrogen Source**
4.4.2 Effect of Short-term Acclimatization Step

4.5 CB Degradation in Batch Culture Condition
- **4.5.1 Dependence of Growth on Aeration Level**
- **4.5.2 Dependence of Growth on Two Different Temperature**
- **4.5.3 Influence of Initial CB Levels in Biodegradation**
 - **4.5.3.1 CB Decrement in Different Initial CB Levels Culture**
 - **4.5.3.2 Degradation kinetics by Culture of Different Initial CB Levels**

5 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS

5.1 Conclusions

5.2 Recommendations for Future Studies

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of soil and groundwater contamination</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Currently remediation technologies</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Halogenated organic compounds and their sources</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Bioremediation Treatment Technologies</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Advantages and disadvantages of bioremediation</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Models for substrate biodegradation by microorganisms, under varying conditions</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical effluent components by industry sector</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Total releases of CB in the USA during 2001</td>
<td>44</td>
</tr>
<tr>
<td>2.9</td>
<td>Chemical identity of CB</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>Physical and Chemical Properties of CB</td>
<td>46</td>
</tr>
<tr>
<td>2.11</td>
<td>Regulatory standard of CB</td>
<td>49</td>
</tr>
<tr>
<td>2.12</td>
<td>Use of microbial consortia in CB bioremediation from the literatures</td>
<td>55</td>
</tr>
<tr>
<td>2.13</td>
<td>Standard analytical methods for determining CB in environmental samples</td>
<td>57</td>
</tr>
<tr>
<td>2.14</td>
<td>HPLC for determination of CB from the literatures</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Summarized results of growth kinetics in each cultures</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of the results on effect of CB levels with other researchers</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mechanisms of dechlorination of chlorinated aromatics;</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>(a) hydrolytic dechlorination; (b) oxygenolytic dechlorination;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) reductive dechlorination; (d) dechlorination after ring cleavage.</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Main principle of aerobic degradation of hydrocarbons: growth</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>associated processes</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Generalized principles of microbial metabolism</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Requirements of Bioremediation</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical growth cycle for a bacterial population</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Municipal wastewater components</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>Proposed main metabolic pathways of CB</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>The catabolism of ortho-cleavage (classical) and meta-cleavage</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>(discovered) dioxygenase.</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>CB liquid 99.9% purity by Fischer Scientific (Germany)</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Steps of isolation, characterization and enrichment, prior to</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>CB biodegradation tests</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Methodology diagrams of CB biodegradation studies</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Chemostat setup using 2-L stirred bioreactor (Biostat®, Germany)</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Isolation for the culture of CB adaptation after seven months</td>
<td>81</td>
</tr>
</tbody>
</table>
4.2 Growth patterns after 48 hours by four cultures
4.3 CB decrement after 48 hours in four separate cultures
4.4 Comparison of the specific degradation rates of CB
4.5 CB level remaining in the cultures with and without nitrogen source
4.6 The addition of nitrogen source increases the specific growth rate, μ, and consequently extends the critical dilution rate, D_c, from 0.08 hour$^{-1}$ to 0.11 hour$^{-1}$
4.7 The supply of nitrogen source enhances the specific CB degradation rate five folds.
4.8 The growth and CB utilization in two cultures with and without short-term (two days) acclimatization step prior to degradation test of 0.04h$^{-1}$ D
4.9 No significant effect on both culture with and without short-term (two days) acclimatization step prior to degradation test
4.10 Dependence of growth on aeration level
4.11 Growth kinetic parameter for high and low aeration within 48 hours
4.12 Effect of temperature with a 10ºC rise in batch mode cultivation
4.13 Growth of consortia at different initial CB concentrations for 6 days
4.14 CB degradation for 6 days at different initial CB concentrations
4.15 The specific degradation rate (g CB/g cell.h) is proportional to the initial concentration of chlorobenzene (mg/L)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>The steady state residual substrate concentration</td>
</tr>
<tr>
<td>ve</td>
<td>Positive</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CO_2</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Cu</td>
<td>Cuprum</td>
</tr>
<tr>
<td>D</td>
<td>Dilution rate</td>
</tr>
<tr>
<td>D_c</td>
<td>Critical dilution rate</td>
</tr>
<tr>
<td>F</td>
<td>Flow</td>
</tr>
<tr>
<td>H_2</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H_2O</td>
<td>Water</td>
</tr>
<tr>
<td>K_s</td>
<td>Substrate utilization constant</td>
</tr>
<tr>
<td>O_2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Q_s</td>
<td>Maximum CB specific degradation rate</td>
</tr>
<tr>
<td>S</td>
<td>Substrate</td>
</tr>
<tr>
<td>S_R</td>
<td>Substrate remaining in the culture</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>$-ve$</td>
<td>Negative</td>
</tr>
<tr>
<td>$\mu_{x/s}$</td>
<td>Cell yield</td>
</tr>
<tr>
<td>μ_g</td>
<td>Specific growth rate</td>
</tr>
<tr>
<td>μ_{max}</td>
<td>Maximum specific growth rate</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ACGIH - American Conference of Governmental Industrial Hygienists
ATSDR - Agency for Toxic Substance and Disease Registry
AU - Absorption Unit
BOD - Biochemical Oxygen Demand
CAA - Clean Air Act
CAS - Chemical Abstracts Service
CB - Chlorobenzene
CEPA - Canadian Environmental Protection Act
CERCLA - Comprehensive Environmental Response
CF - Chloroform
CICAD - Concise International Chemical Assessment Document 60
COD - Chemical Oxygen Demand
CT - Carbon tetrachloride
DCB - Dichlorobenzene
DDT - dichlorodiphenyltrichloroethane
DNA - Deoxyribonucleic acid
DOE - Department of Environment
DOT/UN/N - Department of Transportation/United Nations/North America/International Maritime Dangerous Goods Code
ECD - Electron capture detector
EIA - Environmental Impact
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FFW</td>
<td>Microbes from Fresh Wastewater</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionization detector</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>HAA</td>
<td>Halogenated Alkanoic Acids</td>
</tr>
<tr>
<td>HCl</td>
<td>Acid hydrochloric</td>
</tr>
<tr>
<td>HMRCI</td>
<td>Hazardous Materials Control Research Institute</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRGC</td>
<td>High resolution gas chromatography</td>
</tr>
<tr>
<td>HSD</td>
<td>Halide specific detector</td>
</tr>
<tr>
<td>HSDB</td>
<td>Hazardous Substance Data Bank</td>
</tr>
<tr>
<td>IPCS</td>
<td>International Programme on Chemical Safety</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum Contaminant Level</td>
</tr>
<tr>
<td>MCLG</td>
<td>Maximum Contaminant Level Goals</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometric detector</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>OEHHA</td>
<td>Office of Environmental Health Hazard Assessment</td>
</tr>
<tr>
<td>OHM/TADS</td>
<td>Oil and Hazardous Materials / Technical Assistance Data System</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated biphenyls</td>
</tr>
<tr>
<td>p-CBs</td>
<td>p-chlorobiphenyls</td>
</tr>
<tr>
<td>PCP</td>
<td>Petachlorophenol</td>
</tr>
<tr>
<td>PHG</td>
<td>Public Health Goal</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>RAAG</td>
<td>Remediation Alternative Assessment Group</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RTECS</td>
<td>Registry of Toxic Effects of Chemical Substances</td>
</tr>
<tr>
<td>SPME</td>
<td>Solid Phase Micro-Extraction</td>
</tr>
<tr>
<td>TCDD</td>
<td>Tetrachlorodibeno-p-dioxin</td>
</tr>
</tbody>
</table>
TCE - Tetrachloroethylene
TDS - Total Dissolved Solid
TLV - Threshold Limit Values
TOC - Total Organic Carbon
TRI - Toxics Release Inventory
TSS - Total Suspended Solid
TWA - Time Weighted Average
US - United State
USA - United State of America
UV - Ultra ungu
UV/vis - Ultra ungu visible
VC - Vinyl chloride
WC - White Colony
WHO - World Health Organization
WYC - Mixture of YC and WC
YC - Yellow Colony
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Table 1. Hazardous Substances List and Contaminant Group Codes: US EPA’s formulation</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Table 2. List of Synthetic Organic Chemicals in the Environment</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Table 3. Abbreviation, Chemical Names, and Chlorine To Carbon Ratios of Common Alkyl and Aryl Halide Contaminants</td>
<td>122</td>
</tr>
<tr>
<td>B</td>
<td>Table 1. Biological Processes and Environmental Conditions under which Organohalides may be Transformed by Bacteria</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Table 2. Biodegradation of chlorinated aromatic compounds</td>
<td>124</td>
</tr>
<tr>
<td>C</td>
<td>Table 1. CB Medium and Its Specification</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Table 2. Yeast Extract (YE) Specification</td>
<td>127</td>
</tr>
<tr>
<td>D</td>
<td>Preparation of Biochemical Tests Reagents</td>
<td>128</td>
</tr>
<tr>
<td>E</td>
<td>Figure 1. Standard curve for CB by HPLC (Waters™, USA)</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Figure 2. CB UV/Vis spectrum from NIST Chemistry Webbook</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Figure 3. HPLC chromatogram of a CB standard solution (100% v/v)</td>
<td>132</td>
</tr>
</tbody>
</table>
Table 1. Characterization results for YC, which referred to Bergey’s Manual

Table 1. Characterization results for WC, which referred to Bergey’s Manual

Data for Comparison Study by Different Type of Microbes

Calculation of Specific Growth Rate, μ_g

Data for Continuous Study

Data for Batch Study
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Among the numerous chemical substances that enter the environment with wastewater and exhaust, a great number are benzene derivatives and nonpolar aromatics. Halogenated aromatic compounds such as chlorobenzenes (CBs) are major of concern due to its affects on human healths. The extensive use of CBs over the past few decades as organic solvents, insecticides, degreasers and deodorants, and their use as intermediates in the synthesis of chemicals such as rubber processing, antioxidants, dyes, agricultural products, and pharmaceuticals, has led to a widespread release of these xenobiotic compounds into the environment (EPA, 1980; Harris et al., 1985). The usage coupled with accidental spills and through routine industrial waste disposal practices have resulted in ultimate contamination of the environment, where these pollutants tend to persist (Fathepure et al., 1988). These lipophilic compounds have been found in a wide range of environmental media including soils (Ding et al., 1992), groundwaters (Boyd et al., 1997), sewage sludge (Rogers et al., 1989a; Wang et al., 1992), marine and lake sediments (Masunaga et al., 1991; Lee and Fange, 1997), and open water columns (Rogers et al., 1989b; Harper et al., 1992). They are also known as important river contaminants especially found in United Kingdom (Meharg et al., 2000).
Monochlorobenzene or chlorobenzene (CB) that is currently being targeted by bioremediation because of its resistances (Eweis et al., 1998) was identified as priority pollutant by the U.S. Environmental Protection Agency (EPA, 1980). CB concentrations in surface waters are generally in the ng/L to µg/L range, with maximum concentrations up to 0.2 mg/L in area close to industrial sources (CICAD, 2004). Water samples from Scheldt estuary in Netherlands confirmed that CB levels ranging from 5 to 31.5 ng/L (Huybrechts et al., 2000). In industrial wastewaters, it may be higher and vary according to the nature of the processes used. The observed levels in many surface waters and groundwaters were too low to cause immediate acute toxicity to mammals, birds and aquatic organisms, but little information exists about the long-term exposure and bioaccumulation of CB (Schraa et al., 1986). CB in high concentration causes a wide variety of effects towards human ranging from immunological disorders to adverse effects on the liver, kidney, thyroid, and lung (Rapp and Timmis, 1999). Additionally, its persistency leads to enhance the transferability in the food chain. In spite of these consequences, the destruction of this pollutant was emphasized in many researches and executed under safety conditions in order to protect human and environment from the hazardous effects.

In Malaysia, presence of CB toxic in environmental mostly from the industrial activities. However, the concentration of CB found is not as critical as in other countries that have fast expanding economy in industrial and agricultural sector. Study by Soh and Abdullah (2005) when determining of volatile organic compounds (VOCs) using Solid Phase Micro-Extraction (SPME) illustrates that CB existed in drinking water samples within the range of 1.06 to 2.95 µg/L. Meanwhile, when examining the trends and prospects of environmental pollution, Abdullah (1995) revealed that organic pollution loaded in Malaysia waterways since 1960’s with pollution from agro-based industries accounted for approximately 90% of the industrial pollution load. Organic solvents are among of the toxic and hazardous wastes that are defined in a schedule listing 107 categories of wastes under the Environmental Quality (Schedule Wastes) Regulations 1989. Furthermore, Malaysia industry effluents have been estimated to amount to nearly 380 000 cubic per year, comprising both organic and inorganic materials of varying chemical composition as well as aromatic compound such as CB.
1.2 Research Background

Biological method or bioremediation has become increasingly important rather than chemical and physical processes. Bioremediation is an application of biological process principle to the treatment of groundwater, soil and sludge contaminated with hazardous chemicals. The responsibility of microorganisms for CB removal from the environment via enzymatically catalysed reactions appears to be very important because of its perceived low cost, simplicity and its low adverse effect on the environment (Cookson, 1995). There are numerous applications of bioremediation treatment technologies, but the most commonly used includes bioaugmentation, biofilters, biostimulation, bioreactors, bioventing, composting, and landfarming (Baker and Herson, 1994).

Bioremediation techniques based on aerobic degradation reactions have been proposed as promising treatments for industrial effluents contaminated by CB because they have the potential to transform this contaminant into non toxic end products using economical growth materials (Wilson and Wilson, 1985; Fogel et al., 1986; and McCarty, 1991). Moreover, CB as a less chlorinated benzene congener is amenable to aerobic degradation (Reineke and Knackmuss, 1984; de Bont et al., 1986; Schraa et al., 1986; Spain and Nishino, 1987). The aerobic CB degradation, which via oxidative dechlorination was usually initiated by dioxygenative hydroxylation, then leading to the formation of catechols. Finally, it undergoes the ring fission and subsequent mineralization to carbon dioxide and water. CB biodegradation under anaerobic condition has also been reported (Bittkau et al., 2004), although it occurs at a slower rate than aerobic biodegradation. The resistances to naturally biodegradation of CB caused of low aqueous solubilities, high octanol-water partition coefficients, and both deactivation and steric hindrance due to the number and position of chlorine on the aromatic ring (Reineke and Gibson, 1984).

A wide variety of microorganisms could utilize CB as carbon and energy source, which have been reported by previous workers include de Bont et al., 1986; Schraa et al., 1986; Spain and Nishino, 1987; Pettigrew et al., 199; Haigler et al.,
1992; Keener and Arp, 1994; Van der Meer et al., 1997; Beil et al., 1997; Fairlee et al., 1997; Meckenstock et al., 1998; and Kiernicka et al., 1999. It has been found that different bacterial strains, mostly Gram-negative bacteria such as *Pseudomonas* sp., *Alcaligenes* sp., and *Xantobacter* sp., were individually able to use CB as growth substrate. However, very few Gram-positive bacteria, mainly rhodococci, have been described as having this capability (Zaitsev et al., 1995). Reineke and Knackmuss (1984) clarified the biodegradation pathways of CB that have been thoroughly studied in pure cultures of bacteria, which has been isolated from the mixture of soil and sewage by chemostat enrichment. Besides, the indigenous microbial communities especially from the CB contaminated sites were also capable to degrade CB as cited by Aelion et al., 1987; Nishino et al., 1994; Kao and Presser, 1999; and Balcke et al., 2004.

The ability of microorganisms to degrade CB was believed to closely depend on their long-term adaptation to the contaminated habitat (Van der Meer et al., 1998). As a result, many studies have been directly elucidating the biochemical mechanisms for CB that are broken down by pure cultures from the CB contaminated sites. Hence, the use of microbes from wastewater to degrade CB is scarce in current investigation. Wastewater from residential or industrial activities comprises various compounds or organic matters from a variety of sources. Thus, the potential of these indigenous microbial populations to alleviate the CB pollution problems should be exploited. This study aimed on investigating the kinetic of microbial isolates from residential wastewater to degrade chlorobenzene (CB) in both batch and continuous modes. Investigations would be focused on the isolation approach; comparison of the specific chlorobenzene degradation rate of the identified isolates and their combinations; and the behaviour or CB degradation at different CB levels.

1.3 Objectives and Scopes of Study

The objectives of this research are:
1) To screen and isolate the microorganisms from local wastewater that capable to biodegrade chlorobenzene.

2) To study the kinetics of chlorobenzene degradation by isolated microbes.

3) To evaluate the CB biodegradation in batch and continuous cultures.

With the intention of achieving the objectives of this study, there were some scopes that should be comprised as follows;

1) Propagation and purification of the microbes by using the streak plate technique
 i) isolate the microbes from fresh wastewater
 ii) isolate the microbes after seven months CB adaptation at CB concentration of 0.2m g/L
 iii) identify the dominant strains by morphological observation, staining method and biochemical tests

2) Evaluation of the potential of the microbes to degrade CB in batch culture condition by comparing such inoculums
 i) pure culture (as individual)
 ii) mixed pure cultures (as consortia)
 iii) fresh wastewater (as indigenous communities)

3) Study the degradative capability of microbes in continuous bioreactor as following emphasizes
 i) supplemented with nitrogen source (5.0g/L yeast extract)
 ii) short acclimatization (two days) with CB prior to degradation treatment

4) Investigation of the environmental factors that enhanced the degradation of CB by microbes in batch mode
 i) aeration level – between high and low aerobic condition
 ii) temperature – compare the ambient (27ºC) and temperature 37ºC

5) Examine the behavior of CB degradation at different initial CB levels, i.e. 0.0 (control), 0.0006, 0.0553, 0.1659, and 0.3317 mg/L.
REFERENCES

Aelion, C. M., Swindoll, C. M., and Pfaender, F. K. 1987. Adaptation to and
Biodegradation of xenobiotic compounds by microbial communities from a

Chaudry, G.R.; and Huang, G.H.; 1988. Isolation and characterization of a new plasmid from *Flavobacterium* sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. *Journal Bacteriology*, 170:3897-3902.

Gotz, R.; Friesel, P.; Roch, K.; Papke, O.; Ball, M.; Lis, A., 1993. Polychlorinated p-dioxins (PCDDs), dibenzofurans (PCDFs), and other chlorinated compounds in the river Elbe; Results on bottom sediments and fresh sediments collected in sedimentation chambers. *Chemosphere*, 27(1-3):105-111

Haber, L.; Allen, L. N.; Zhao, S.; and Hanson, R. S.; Methylotrophic Bacteria: Biochemical Diversity and Genetics, *Science*, 1983, Vol. 221. 1147-1153

Jones, R.H., 1968. Total Organic Carbon Analysis and Its Relationship to Biochemical and Chemical Oxygen Demand, Principal Application Engineer, Beckman Instruments, Inc., Fullerton, California, 1968. 116-125

Meckenstock, R.; Stenie, P.; Van der Meer, J.R., Snozzi, M., 1998. Quantification of bacterial mRNA involved in degradation of 1,2,4-trichlorobenzene by *Pseudomonas* sp. strain P51 from liquid culture and from river sediment

RAAG, 2000. Evaluation of Risk Based Corrective Action Model, Remediation Alternative Assessment Group, Memorial University of Newfound, St John’s, NF, Canada.

http://webbook.nist.gov/chemistry