STRUCTURAL AND LUMINESCENCE PROPERTIES OF MAGNESIUM STRONTIUM METAPHOSPHATE DOPED WITH EUROPIUM AND DYSPROSIIUM IONS

DAYANG NUR FAZLIANA BINTI ABDUL HALIM

UNIVERSITI TEKNOLOGI MALAYSIA
STRUCTURAL AND LUMINESCENCE PROPERTIES OF MAGNESIUM STRONTIUM METAPHOSPHATE DOPED WITH EUROPIUM AND DYSPROSIUM IONS

DAYANG NUR FAZLIANA BINTI ABDUL HALIM

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Physics)

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2011
To my *Abah* and *Mama* who have given me much more than these few words can say.

For my siblings and fiance, thanks for the patience, love and prayers.
ACKNOWLEDGEMENT

Alhamdulillah. Thanks to Allah SWT, whom with His willing giving me the opportunity to complete this master study. I am heartily thankful to my supervisor, Prof Dr. Rosli Bin Hussin, whose encouragement, supervision and support from the preliminary to the concluding level enabled me to develop an understanding of the subject. To all physics lecturers (UTM), thank you for the encouragement and immense knowledge you gave all along.

I would also like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) for the financial support and kindly good encouragement in the course of my study. My sincere thanks and appreciation extend to the laboratory assistants of physics department who had helped me in many ways.

Deepest thanks and appreciation goes to my parents, family, my fiance and all my colleagues. I have been blessed with a friendly and cheerful group of phosphor team members. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of this study.
ABSTRACT

A series of samples based on $x\text{MgO-(50-x)SrO-50P}_2\text{O}_5$ (with $0 < x < 50$ mol %) were prepared using solid state reaction method and sintered at 900°C. The crystalline phase of powder samples were characterized using X-ray diffraction (XRD) while the assignments of the vibration modes were determined using Fourier Transform Infrared (IR) and Raman spectroscopies. The XRD analysis indicated that the prepared samples were polycrystalline phase of $\text{Sr(P}_3\text{O}_4)_2$, SrMgP_2O_7, $\text{Mg}_2\text{P}_4\text{O}_{12}$ and $\text{Mg}_2\text{P}_2\text{O}_7$. The optimum sintering temperature of the prepared samples is 900°C. The Infrared and Raman studies showed that the magnesium strontium metaphosphate system consists of a main network of Q^2, Q^1 and Q^0 tetrahedral units. There were four peaks observed in the both spectra which are P=O group (1320 cm$^{-1}$), PO_2 group (1200 – 1170 cm$^{-1}$), PO_3 and PO_4 groups (1160 – 950 cm$^{-1}$) and P-O-P group (950 - 704 cm$^{-1}$). This study illustrated that SrO and MgO act as modifiers and also improved chemical and physical stability of the phosphate material. The dopant ions (Eu$^{3+}$ and Dy$^{3+}$) as studied using XRD, IR and Raman spectra showed that small quantities of europium and dysprosium ions does not affect the local structure of magnesium strontium metaphosphate network. The luminescence property of the Eu$^{3+}$ and Dy$^{3+}$ as dopants in magnesium strontium metaphosphate was studied using photoluminescence spectroscopy. The emission peaks for Eu$^{3+}$ doped sample were located at 568 nm, 582 nm, 605 nm, 642 nm and 689 nm, due to the $^5\text{D}_0 \rightarrow ^7\text{F}_j$ ($j = 0, 1, 2, 3, 4$) transition. Meanwhile for Dy$^{3+}$ doped sample, two intense peaks appear at 477 nm and 564 nm are due to the $^4\text{F}_{9/2} \rightarrow ^6\text{H}_{15/2}$ and $^4\text{F}_{9/2} \rightarrow ^6\text{H}_{13/2}$ transitions. For sample doped with Eu$^{3+}$ and Dy$^{3+}$, the intensity of the main peak increases. This study also showed that magnesium strontium metaphosphate doped with Eu$^{3+}$ and Dy$^{3+}$ has better luminescence characteristic as compared to strontium metaphosphate or magnesium metaphosphate. The results of the study suggested that magnesium strontium metaphosphate is a potential candidate for plasma display applications.
ABSTRAK

Satu siri sampel berasaskan sistem xMgO-(50-x)SrO-50P2O5 (dengan 0 < x < 50 mol %) disediakan melalui kaedah tindak balas keadaan pepejal dan disinter pada suhu 900°C. Kehabluran bagi sampel-sampel diciri menggunakan pembelauan sinar-X (XRD) manakala sifat-sifat getaran ditentukan dengan menggunakan serapan infra merah (IR) dan spektroskopi Raman. Analisis XRD menunjukkan sampel-sampel berada pada fasa polihiabluran Sr(PO3)2, SrMgP2O7, Mg2P4O12 dan Mg2P2O7. Suhu optimum pensinteran sampel ialah 900°C. Kajian serapan infra merah dan Raman menunjukkan sistem magnesium strontium metafosfat mengandungi rangkaia utama Q2, Q1 dan Q0 fosfat tetrahedron. Terdapat empat puncak pada kedua-dua spektrum iaitu kumpulan P=O (1320 cm⁻¹), kumpulan PO2 (1200 – 1170 cm⁻¹), kumpulan PO3 dan PO4 (1160 – 950 cm⁻¹) dan kumpulan P-O-P (950 - 704 cm⁻¹). Kajian menjelaskan penambahan SrO dan MgO bertindak memantapkan kestabilan kimia dan fizikal bahan fosfat. Bahan pendop (Eu³⁺ and Dy³⁺) yang dikaji menggunakan spectrum XRD, infra merah dan Raman menunjukkan kuantiti kecil ion europium dan disprosium tidak menjcaskan rangkaia struktur magnesium strontium metafosfat. Pencirian luminesen Eu³⁺ dan Dy³⁺ sebagai bahan pendop dalam magnesium strontium metafosfat diukur menggunakan spektroskop fotoluminesenes. Puncak pemancaran bagi sampel didop dengan Eu³⁺ ialah pada 568 nm, 582 nm, 605 nm, 642 nm dan 689 nm, disebabkan peralihan ⁵D0 → ⁷Fj (j= 0, 1, 2, 3, 4). Sementara itu untuk sampel didop Dy³⁺, dua puncak pancaran utama dilihat pada 477 nm dan 564 nm yang disebabkan oleh peralihan pada ⁴F9/2 → ⁶H15/2 dan ⁴F9/2 → ⁶H13/2. Untuk sampel yang didip dengan kedua – dua ion iaitu Eu³⁺ dan Dy³⁺, keamatan puncak utama semakin meningkat. Kajian juga menunjukkan magnesium strontium metafosfat yang didip dengan Eu³⁺ and Dy³⁺ mempunyai puncak pancaran yang lebih tinggi berbanding dengan strontium metafosfat atau magnesium metafosfat. Keputusan kajian mencadangkan magnesium strontium metafosfat sebagai salah satu calon yang berpotensi untuk aplikasi paparan plasma.
TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE i
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF SYMBOLS xiv
LIST OF APPENDICES xv

1 INTRODUCTION
1.1 General Introduction 1
1.2 Statement of Problem 3
1.3 Aims of the Study 4
1.4 Scope of the Study 4
1.4.1 Sample Preparation 5
1.4.2 Sample Characterization 5
1.5 Significant of the Research 5
2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Structural Characteristic 7
 2.2.1 X-ray Diffraction 8
 2.2.2 Fourier Transform Infrared Spectroscopy 9
 2.2.3 Fourier Transform Raman Spectroscopy 11
2.3 Luminescence Characteristic 13
 2.3.1 Mechanism of Luminescence 14
 2.3.2 Types of Luminescence 16
 2.3.3 Luminescence of Rare Earth Ions 18
 2.3.4 Effect of Doping Ions on Luminescence Properties 20
2.4 Phosphor Material 23
 2.4.1 Phosphate Based Phosphor 24
 2.4.2 Basic structure of phosphate 24
 2.4.3 Alkali Earth Phosphate 27

3 METHODOLOGY

3.1 Introduction 30
3.2 Sample preparation 31
3.3 Experimental Characterizations 34
 3.3.1 X-ray Diffraction 34
 3.3.2 Fourier Transform Infrared Spectroscopy 35
 3.3.3 Fourier Transform Raman Spectroscopy 36
 3.3.4 Photoluminescence Spectroscopy 37

4 RESULTS AND DISCUSSION

4.1 Introduction 38
4.2 Structural Study 38
 4.2.1 Crystalline Phase Analysis 39
 4.2.2 Infrared Spectra Analysis 44
4.2.3 Raman Spectra Analysis 54
4.3 Luminescence Study 59
4.3.1 Luminescence Spectra of Europium Ion 61
4.3.2 Luminescence Spectra of Dysprosium Ion 65
4.3.3 Luminescence Spectra of Europium and Dysprosium Ions 68

5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Summary 71
5.2 Future Study 73

REFERENCES 74
APPENDICES 82
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Electronic Configurations of Trivalent Rare-Earth Ions in the Ground State (Kano, 2006)</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>The types of phosphates and their description (Brow, 2000)</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>The composition of phosphor samples</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Crystallographic data and lattice parameter of crystal phase observed in this study</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Peak frequencies (cm(^{-1})) observed in the IR spectra of the xMgO-(50-x)SrO-50P(_2)O(_5) (with 0 (\leq) x (\leq) 50 mol %)</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Peak frequencies (cm(^{-1})) observed in the Raman spectra of the xMgO-(50-x)SrO-50P(_2)O(_5) (with 0 (\leq) x (\leq) 50 mol %)</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Principle of X-ray Diffraction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of a Fourier transform Infrared spectrometer</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of a Raman spectroscopy</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>(a) Excitation and (b) emission spectra of Eu$^{3+}$:Li$_2$TiO$_3$ systems as reported by Kumar and Buddhudu (2009)</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Luminescence intensities of Ca$_5$La$_6$(SiO$_4$)$_2$(PO$_4$)$_3$O$_2$: Dy$^{3+}$ (Yang and Huang, 2007)</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Phosphor devices in various fields of applications (Shinoya, 2001)</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>P-tetrahedral sites that can exist in phosphate host (Hudgens et al., 1998)</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>XRD patterns for calcium pyrophosphate at different sintering temperature (Doat et al., 2005)</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>The phosphor sample (a) after the sintering process (b) under ultraviolet lamp</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of sample preparation</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>X-ray Diffractometer (Siemens Diffractometer)</td>
<td>34</td>
</tr>
</tbody>
</table>
3.4 FTIR instrument at Chemistry Department, Universiti Teknologi Malaysia, Skudai

3.5 Raman instrument at Universiti Teknologi Malaysia, Skudai

3.6 Equipment used for photoluminescence spectroscopy at School of Physics, Universiti Sains Malaysia

4.1 XRD patterns at different sintering temperatures

4.2 (a) X-ray diffraction patterns of $x\text{MgO-(50-x)SrO-50P_2O_5}$ with composition in the range $0 \leq x \leq 25$ mol %

4.2 (b) X-ray diffraction patterns of $x\text{MgO-(50-x)SrO-50P_2O_5}$ with composition in the range $30 \leq x \leq 50$ mol %

4.3 XRD patterns of $\text{MgO}_x\text{Sr}_x\text{P}_2\text{O}_5$ (a) undoped (b) doped Eu$^{3+}$ (c) doped Dy$^{3+}$ (d) doped Eu$^{3+}$ and Dy$^{3+}$

4.4 (a) FT-Infrared spectra of $x\text{MgO-(50-x)SrO-50P_2O_5}$ powder samples (with $0 \leq x \leq 25$ mol %)

4.4 (b) FT-Infrared spectra of $x\text{MgO-(50-x)SrO-50P_2O_5}$ powder samples (with $30 \leq x \leq 50$ mol %)

4.5 FT-Infrared spectra of $x\text{MgO-(50-x)SrO-50P_2O_5}$ powder samples (with $0 \leq x \leq 50$ mol %) at higher frequencies

4.6 IR spectra of $25\text{MgO-25SrO-50P_2O_5}$ (a) undoped (b) doped Eu$^{3+}$ (c) doped Dy$^{3+}$ (d) doped Eu$^{3+}$ and Dy$^{3+}$

4.7 The phosphate tetrahedron structure

4.8 Schematic structure of magnesium replacement
in part of strontium ion for magnesium strontium phosphate

4.9 (a) Raman spectra of $x\text{MgO-}(50-x)\text{SrO-}50\text{P}_2\text{O}_5$ powder samples (with $0 \leq x \leq 25$ mol %)

4.9 (b) Raman spectra of $x\text{MgO-}(50-x)\text{SrO-}50\text{P}_2\text{O}_5$ powder samples (with $30 \leq x \leq 50$ mol %)

4.10 Raman spectra of $25\text{MgO-}25\text{SrO-}50\text{P}_2\text{O}_5$
(a) undoped (b) doped Eu$^{3+}$ (c) doped Dy$^{3+}$
(d) doped Eu$^{3+}$ and Dy$^{3+}$

4.11 The luminescence spectra of $25\text{MgO-}25\text{SrO-}50\text{P}_2\text{O}_5$ for (a) undoped and (b) doped with Eu$^{3+}$

4.12 The energy level for Eu$^{3+}$ in $25\text{MgO-}25\text{SrO-}50\text{P}_2\text{O}_5$

4.13 The luminescence spectra of $25\text{SrO-}25\text{MgO-}50\text{P}_2\text{O}_5$ for (a) undoped and (b) doped Dy$^{3+}$

4.14 The energy level of Dy$^{3+}$ in $25\text{MgO-}25\text{SrO-}50\text{P}_2\text{O}_5$

4.15 The luminescence spectra of Eu$^{3+}$ and Dy$^{3+}$ doped in (a) $50\text{SrO-}50\text{P}_2\text{O}_5$ (b)$50\text{MgO-}50\text{P}_2\text{O}_5$
(c) $25\text{MgO-}25\text{SrO-}50\text{P}_2\text{O}_5$

4.16 The energy level model of Eu$^{3+}$ and Dy$^{3+}$ in magnesium strontium metaphosphate
LIST OF SYMBOLS

\(\delta \) - Deformation
\(v_{as} \) - Asymmetric Stretching
\(v_{s} \) - Symmetric Stretching
\(E \) - Energy
\(\lambda \) - Wavelength
\(S \) - Spin angular momentum
\(L \) - Orbital angular momentum
\(J \) - Total angular momentum
\(l \) - Azimuthal quantum number
\(c \) - Speed of Light
\(v \) - Frequency of light
\(d \) - Distance
\(\theta \) - Angle
\(\hbar \) - Planck constant
\(Q \) - Tetrahedral of phosphate link
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The Samples Calculation</td>
<td>82</td>
</tr>
<tr>
<td>B</td>
<td>Publications</td>
<td>85</td>
</tr>
</tbody>
</table>
1.1 General Introduction

Luminescence is related to the basic science as well as to the applied science. The word luminescence was first used by Eilhardt Wiedemann, a German physicist, in 1888 which means light (Williams, 1966). Nowadays, luminescence is observed with all phases of matter including gases, liquids and solids both organic and inorganic. The commercial importance of luminescence is ubiquitous, being manifest in displays, lamps, biochemistry, environmental sciences, pharmaceuticals and others fields. In nature, luminescence exists in fireflies, insects, fishes, mushrooms and luminescent bacteria.

Luminescence can be defined as the generation of light in excess of thermal radiation. Excitation of the luminescence substance is prerequisite to luminescent emission. There are several types of luminescence depending on their source of
excitation which are photoluminescence, cathodoluminescence, electroluminescence, triboluminescence and chemiluminescence.

Materials that can generate luminescence are called phosphors. Commercial phosphors are mostly inorganic compounds prepared as powders, glasses or thin films (Cees and Alok, 2006). Phosphor materials have attracted much attention because of their application to flat panel displays (FPD), including field-emission displays (FED). The long after glow phosphor is a special property in luminescence field of research. It can maintain the phosphorescence for several hours at room temperature. In the early time, zinc sulphide doped cobalt and copper (ZnS: Cu, Co) was considered the main phosphorescent materials. However, it has a short phosphorescence time and not stable enough during its application (Bol et al., 2002). Thus new hosts are getting much attention in order to improve the long after glow properties and their stability.

Since its invention in the 19th century, the long lasting phosphor has been greatly improved. Phosphate based is particularly an attractive host because it can accommodate large concentrations of active ions without losing the useful properties of the material. It also has several special properties such as large thermal expansion coefficients, low melting temperatures, solubility and stability at higher temperatures (Day et al., 1998). As example, Ca₅La₅(SiO₄)₃(PO₄)₃O₂: Dy³⁺ is considered as an excellent commercial white light long lasting phosphor that has been widely applied in the development of fluorescent lamps, cathode ray tubes, field emission displays and plasma display panels (Yang and Huang, 2007).

Alkaline earth phosphates has attracted research interests in the field of photoluminescence since they are suitable hosts with high chemical stability, offers better homogeneity and lowers sintering temperature and also can produce plenty of crystal field environments imposed on emission centers. Alkali earth phosphates
constitute a wide family, which, to our knowledge, has been little explored, although their biocompatibility is well established (Liu et al., 2007). The developments of phosphate based materials for a variety of technological applications, from rare-earth ion hosts for solid state lasers to low temperature sealing glasses, have led to renewed interest in understanding the structures of these unusual materials.

Over the past few decades, much attention has been devoted towards trivalent lanthanide based materials for the development of optical devices such as solid-state lasers, fiber amplifiers and infrared to visible up-converters (Walrand and Binnemans, 1998). For example, Ferhi et al. (2009) reported that LaPO₄:Eu³⁺ has been identified as another good phosphate phosphor which displays an intense red emission under an ultraviolet (UV) source. Up to now, rare earth ion doped luminescence materials become an interesting topic in the field of luminescence material.

1.4 Statement of Problem

Among the borate, silicate and aluminate hosts materials, phosphate system seems to be the most appropriate for investigations due its lower melting temperature, higher thermal expansion coefficient and easy of fabrication techniques. However the low chemical resistance and moisture degradation of phosphate systems poses many restrictions on their commercial exploitation and usefulness. The studies by Shaw and Shelby (1988) showed various oxides such as SnO, PbO, ZnO and Fe₂O₃ improve dramatically the chemical durability. However, the addition of alkaline earth, SrO and MgO into phosphate networks is limited in structural study. Thus, this study should be useful in determining the structural properties of magnesium strontium metaphosphate system.
Even though many new long lasting phosphorescent materials are developed, the luminescence phenomenon activated by lanthanide elements remains to be explored. Besides that, most of the luminescence emissions in aluminate and silicate host material are in the ultraviolet and infrared region. Thus, in this study, magnesium strontium metaphosphate doped with Eu$^{3+}$ and Dy$^{3+}$ ions were studied in order to determine their luminescence properties.

1.5 Aims of the Study

The aims of this study are as follows:

1. To prepare and determine the structure and crystalline phases of magnesium strontium metaphosphate.
2. To determine the influence of the modifier concentration, MgO and SrO to the phosphate network.
3. To determine the luminescence properties of europium and dysprosium ions doped in magnesium strontium metaphosphate material.

1.4 Scope of the Study

Researches based on phosphate material are too wide. Thus, sample preparation and its characterization are controlled in this study.
1.4.1 Sample Preparation

The host material based on metaphosphate was prepared using solid state reaction method. Magnesium oxide and strontium oxide were used as modifiers in order to reduce the hygroscopic properties. In addition, Eu$^{3+}$ and Dy$^{3+}$ were chosen to be the dopant ions for this study in order to study the effect of dopants on the luminescence properties.

1.4.2 Sample Characterization

Different types of measurements were used in this study. The X-ray diffraction (XRD) was used to determine the phase of the obtained samples, while FT-Infrared and FT-Raman spectroscopy were used to determine the structural features of the host material. Luminescence spectra were obtained from photoluminescence spectroscopy.

1.5 Significant of the Research

We expect to obtain samples that are chemically and physically stable which can be easily prepared at lower melting temperature and lower cost compared to other host matrix material such as silicate, tellurite and aluminate. In addition, it is hoped that the doping ions; Eu$^{3+}$ and Dy$^{3+}$ can enhance the luminescence characteristic in magnesium strontium metaphosphate materials and glow in the visible region. These properties
contribute a lot of knowledge and a good reference for further research in developing the luminescence technology for applications of phosphor in electronics display and luminous painting.