DEVELOPMENT OF UNIVERSAL SOFTWARE RADIO PERIPHERAL AMPLIFIER FOR UNDERWATER ACOUSTIC PLATFORM USING SOFTWARE DEFINED RADIO

HAYDAR SABEEH KALASH

A dissertation submitted in partial of the requirements for the award of the degree of Master of Engineering (Communication Engineering)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JANUARY 2010
To everyone who told me not to give up.
ACKNOWLEDGEMENTS

I would like to dedicate my acknowledgement to my supervisor Dr. Sharifah Hafizah Syed Ariffin, for understanding my character and allowing me to explore many different exciting research areas before focusing on a dissertation topic. I thank her for pushing me to hit the ground running and keep the momentum going throughout my graduate career. Her valuable support and encouragement for me to complete my research. Her frankness and constructive ideas help me a lot in the course of my project and without her great experience and vast knowledge, this thesis could not be completed within the time frame. Her wisdom and advises not only on my research area, but also life in general and for that, I am very grateful to her. Her guidance makes me feel close to her and every time she shared her experienced or gave a stern order.

I am indebted to my many student colleagues for providing a positive and fun environment in UTM Skudai. I am especially grateful to Adib, Rozaini, Hija, Hamidreazh, Farid and Mustafa. I would like to thank all my family and friends who have supported me on my journey through graduate school and have made this dissertation possible. I would especially like to thank my parents, Prof. Dr. Sabeeh and Kamila, my sisters, Azhar and Maha, and my Brother, Ammar and Nather, for always believing in me and providing me with unconditional love and support. With them around, it is always merry and they help me a lot in channeling my built up stress in a good way and also stimulating the research environment.
ABSTRACT

First and foremost, the development of a modem using the USRP has applications in oceanographic monitoring and communication. Improved acoustic connecting would allow more efficient transfer of information between Underwater Acoustic (UWA) equipment such as autonomous vehicles, piloted vehicles, and underwater profilers. Therefore it can easily be modified in order to be employed for the testing of different UWA. This project describes the full system of an underwater acoustic modem with underwater wireless connection starting with the most critical component of the system which is the USRP amplifier for the receiver and the transceiver. In this project we focused on the development of the USRP amplifier. This amplifier is expected to enhance the signal of the transceiver to Universal Software Radio Peripheral (USRP) modem and the GNU radio. The platform that we proposed uses the Software Defined Radio (SDR) as the main controller. This is due to its flexibility in modulation and able to support coding. Since this is an initial stage, in this work we only use Gaussian Minimum Shift Keying (GMSK) as the modulation techniques. The performance of the UWA platform had been tested and we found that as the frequency increases the attenuation increased as well but with the USRP amplifier we have managed to decrease it. UWA communication research will benefit greatly from the adaption of the USRP as an underwater acoustic modem. The USRP amplifier amplifies the signal that has send by the transceiver and detected by the receiver will effectively demodulate the signal and analyze the received data in the USRP modem. GNU radio and USRP SDR has been successfully implemented. The results demonstrate that the objectives of this research are archived. It is proved that by implementing GNU radio and USRP SDR in the new generation of underwater acoustic communication technology, and improves the utilization of the underwater communication. We conclude that the proper design of the USRP Amplifier is crucial to obtain high quality performance. This project has successfully developed a USRP amplifier and the underwater acoustic communication testbed with expected results.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1. Overview 1
1.2. Problem Statement 3
1.3. Research Objectives 4
1.4. Scope of Work 4
1.5. Organization of the Thesis 5

2 LITERATURE REVIEW

2.1. Overview 6
2.2. Radio Frequency Waves 7
 2.2.1 Conductivity 8
2.2.2 Wavelength 9
2.2.3 Air/Water Interface 10
2.2.4 Existing RF Systems 11

2.3. Acoustic Waves 12
2.3.1 Absorption Loss 13
2.3.2 Spreading Loss 14
2.3.3 Noise 15
2.3.4 Passive Sonar Equation 17
2.3.5 Multipath 18
2.3.6 Why Acoustic 19

2.4. Current Acoustic Modems 19

2.5. Software Defined Radio 22
2.5.1 GNU Radio 25
2.5.2 Universal Software Radio Peripheral 27
2.5.3 GNU Radio and USRP Applications 28

2.6. GMSK Modulation 31
2.6.1 GMSK basics 31
2.6.2 Generating GMSK modulation 32
2.6.3 Advantages of GMSK modulation 34

2.7. Brüel & Kjær Hydrophones 34
2.7.1 Hydrophone Type 8104 35
2.7.2 Hydrophone Type 8105 36

2.8. Summary 37

3 INITIAL EXPERIMENTS

3.1. Overview 38

3.2. Hydrophone Experiment 39
3.2.1 Water Tank 40
3.2.2 Sensitivity Measurement and Directivity of the Produced Headphone in Low Frequency 42

3.3 GNU Radio and USRP Installation 44

3.4 GNU Radio and USRP Test-Run 47

3.5 GNU Radio and USRP Experiment Result 50
THE UWA PLATFORM AMPLIFIER DESIGN

4.1 Overview

4.2 Power Amplifier

4.3 USRP Amplifier Design
 4.3.1 The amplifier for UWA platform

4.4 Integrated Tests
 4.4.1 Multipath Measurements
 4.4.2 Tank Tests
 4.4.3 Underwater Integrated system for GMSK Based Acoustic
 4.4.4 General Acoustic Setup and Performance Evaluation
 4.4.3 The UWA Platform Test

4.5 Summary

5 CONCLUSIONS

5.1 Overview

5.2 Future Works

REFERENCES

Appendix A - B
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Research Underwater Acoustic Modem Comparison</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Electronic characteristics of the produced hydrophone The</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>The measured sensitivity of the 8105, 8104 and the produced hydrophone</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters Used in GMSK Based Acoustic Performance Evaluation</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Electromagnetic Spectrum</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Attenuation vs. Frequency in Fresh Sea Water</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>RF Wavelength vs. Frequency in Sea Water, Fresh Water and Air</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Air to Water Refraction Loss as a Function of Frequency</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Wireless Fibre Systems SeaText Modem</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Acoustic Absorption as a function of temperature, pressure, and pH</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Acoustic Spherical and Cylindrical Spreading Loss</td>
<td>15</td>
</tr>
<tr>
<td>2.8</td>
<td>The typical sound levels of ocean background noise at different frequencies</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>Source Level vs. Transmission Distance for a 40 kHz carrier an ambient noise of 50 dB re 1 μPa at various levels of SNR</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Ray Trace for a 40 kHz source with a 15 degree beam angle placed at 10 meters depth in a body of water 11 meters deep with a constant sound speed of 1500 m/s</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>Software Defined Radio Block Diagram</td>
<td>24</td>
</tr>
<tr>
<td>2.12</td>
<td>Basic Structure of GNU Radio Flow Graph</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>GNU Radio and USRP Structure</td>
<td>26</td>
</tr>
<tr>
<td>2.14</td>
<td>USRP in Lab</td>
<td>27</td>
</tr>
<tr>
<td>2.15</td>
<td>USRP motherboard</td>
<td>28</td>
</tr>
<tr>
<td>2.16</td>
<td>Signal using MSK modulation</td>
<td>32</td>
</tr>
<tr>
<td>2.17</td>
<td>Spectral density of MSK and GMSK signals</td>
<td>32</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>Generating GMSK using a Gaussian filter and VCO</td>
<td>33</td>
</tr>
<tr>
<td>2.19</td>
<td>Block diagram of I-Q modulator used to create GMSK</td>
<td>33</td>
</tr>
<tr>
<td>2.20</td>
<td>Hydrophone Type 8104</td>
<td>35</td>
</tr>
<tr>
<td>2.21</td>
<td>Hydrophone Type 8105</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>DS-6121A Iwatsu Digital Storage-scope</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>The water tank in the Lab</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>System experiment.</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Screenshot of the <code>benchmark_tx.py</code> running on the Terminal While Transmitting Data</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Screenshot of the <code>benchmark_rx.py</code> running on the Terminal While Receiving Data</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Screenshot of the Software-Based Spectrum Analyzer by using the <code>usrp_fft.py</code> code</td>
<td>50</td>
</tr>
<tr>
<td>3.7</td>
<td>Show the experiment in the Lab.</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>The GNU Radio and USRP Architecture</td>
<td>51</td>
</tr>
<tr>
<td>3.9</td>
<td>Configuration of the transmitter.</td>
<td>52</td>
</tr>
<tr>
<td>3.10</td>
<td>Packet received within the distance</td>
<td>53</td>
</tr>
<tr>
<td>3.11</td>
<td>Attenuation within the distance</td>
<td>54</td>
</tr>
<tr>
<td>3.12</td>
<td>Packets received within the bit rate</td>
<td>54</td>
</tr>
<tr>
<td>3.13</td>
<td>Packets received within the Transmitting Gain</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Packets sent within the Receiving Gain</td>
<td>56</td>
</tr>
<tr>
<td>4.1</td>
<td>USRP Amplifier Design</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Class A Amplifier Input / Output Characteristic</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Class B Amplifier Input / Output Characteristic for one transistor</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Class AB Amplifier Input / Output Characteristic for one transistor</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Block diagram of the power amplifier design making use of a class A and class B amplifier to achieve linearity and efficiency</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Full system Architecture.</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Block diagram of the USRP amplifier design</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Complete Amplifier Linearity</td>
<td>66</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.9</td>
<td>Receiver Block Diagram</td>
<td>67</td>
</tr>
<tr>
<td>4.10</td>
<td>Estimated power coupled in the transmitting frequency</td>
<td>68</td>
</tr>
<tr>
<td>4.11</td>
<td>Overall Receiver Gain</td>
<td>69</td>
</tr>
<tr>
<td>4.12</td>
<td>Pico PicoScope device</td>
<td>71</td>
</tr>
<tr>
<td>4.13</td>
<td>Performance of the underwater integrated system for</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>GMSK Based Acoustic</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Receiver measurement for GMSK</td>
<td>75</td>
</tr>
<tr>
<td>4.15</td>
<td>Transmitter measurement for GMSK</td>
<td>76</td>
</tr>
<tr>
<td>4.16</td>
<td>Compare the packet received within the distance for the system with</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>USRP amplifier and without it.</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Compare the packet received within the Bit Rate for the system with</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>USRP amplifier and without it.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\alpha \) - Attenuation
\(f \) - Frequency
\(\sigma \) - Conductivity
\(\lambda \) - Wavelength
\(e^{\alpha(f)d} \) - Absorptive loss for acoustic wave propagation
\(d \) - Propagation distance
\(\alpha(f) \) - Absorption coefficient of frequency \(f \)
\(f_1, f_2 \) - Relaxation frequency
\(P_1, P_2, P_3 \) - Pressure dependencies
\(A_1, A_2 \) - Constants
\(SNR \) - Desired signal to noise ratio
\(SL \) - Source level
\(TL \) - Transmission loss
\(NL \) - Noise level
\(Q \) - Total signal sent in the system
\(Z_{fr}(\Omega) \) - Electrical Impedance
\(\rho \) - Instantaneous departure of the pressure
\(x \) - Mean position
\(h \) - Mean at depth
\(\omega \) - Angular frequency
\(P_0 \) - Pressure amplitude
\(Pfa \) - Low probability of false alarm
\(Pd \) - Probability of detection
\(T \) - Time
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>Sample time</td>
</tr>
<tr>
<td>N</td>
<td>Number of samples</td>
</tr>
<tr>
<td>$T_{measure}$</td>
<td>Time Measurement</td>
</tr>
<tr>
<td>N_{200}</td>
<td>Value of the sample</td>
</tr>
<tr>
<td>$Ac(\tau)$</td>
<td>Amplitude delay profile</td>
</tr>
<tr>
<td>M</td>
<td>Effective signal length</td>
</tr>
<tr>
<td>$\bar{\tau}$</td>
<td>Mean delay</td>
</tr>
<tr>
<td>τ_{rms}</td>
<td>rms delay spread</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>AcTUP</th>
<th>AIDS Coalition to Unleash Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>B&K</td>
<td>Brüel &Kjær</td>
</tr>
<tr>
<td>BR</td>
<td>Bit Rate</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Of The Shelf</td>
</tr>
<tr>
<td>CPM</td>
<td>Continuous Phase Modulation</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Convertor</td>
</tr>
<tr>
<td>DBPSK</td>
<td>Differential Binary Phase Shift Keying</td>
</tr>
<tr>
<td>DDC</td>
<td>Digital Down Converter</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>DQPSK</td>
<td>Differential Quaternary Phase-Shift Keying</td>
</tr>
<tr>
<td>DUC</td>
<td>Digital Up Converter</td>
</tr>
<tr>
<td>ELF</td>
<td>Extremely low frequency</td>
</tr>
<tr>
<td>FE</td>
<td>Front End</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FHS</td>
<td>Frequency Hop Sequence</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite Impulse Response</td>
</tr>
<tr>
<td>FSK</td>
<td>Frequency-shift keying</td>
</tr>
<tr>
<td>FRONT</td>
<td>Front-Resolving Observational Network with Telemetry</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum Shift Keying</td>
</tr>
<tr>
<td>GNU</td>
<td>"Genuinely Not Unix" Operating System composed of free software</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile</td>
</tr>
<tr>
<td>GSSSM</td>
<td>Global Software System for Mobile communications</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>IIR</td>
<td>Infinite Impulse Response</td>
</tr>
<tr>
<td>JTRS</td>
<td>Joint Tactical Radio System</td>
</tr>
<tr>
<td>LDPC</td>
<td>Low-Density Parity-Check</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Layer</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple-Input, Multiple-Output</td>
</tr>
<tr>
<td>MSK</td>
<td>Minimum Shift Keying</td>
</tr>
<tr>
<td>MW</td>
<td>Mega-Watt</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>NS</td>
<td>Denotes value</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency-Division Multiplexing</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PR</td>
<td>Packet Received</td>
</tr>
<tr>
<td>PRR</td>
<td>Packet Received Ratio</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase-Shift Keying</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase-Shift Keying</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>Rx</td>
<td>Receiver</td>
</tr>
<tr>
<td>SDR</td>
<td>Software Defined Radio</td>
</tr>
<tr>
<td>SNUSE</td>
<td>Sensor Networks for Undersea Seismic Experimentation</td>
</tr>
<tr>
<td>SWIG</td>
<td>Simplified Wrapper and Interface Generator</td>
</tr>
<tr>
<td>TRG</td>
<td>Telematic Research Group</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmitter</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USRP</td>
<td>Universal Software Radio Peripheral</td>
</tr>
<tr>
<td>UWA</td>
<td>Underwater acoustic</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage-Controlled Oscillator</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TC913B Specifications</td>
<td>87</td>
</tr>
<tr>
<td>B</td>
<td>LT1113 Specifications</td>
<td>93</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Underwater Acoustic (UWA) has become widely focused from many engineers and it has surfaced as a powerful technique for aquatic applications, and it has attracted more and more attention from the research community recently. UWA communication is beginning to revolutionize our understanding of the physical world by providing fine resolution sampling of the surrounding environment. The ability to have many small devices streaming real-time data physically distributed near the objects being sensed brings new opportunities to observe and act on the world which could provide significant benefits to mankind. For example, dense wireless sensor communication have been used in agriculture to improve the quality, yield and value of crops, by tracking soil temperatures and informing farmers of fruit maturity and potential damages from freezing temperatures [1]. They have been deployed in sensitive habitats to monitor the causes for mortality in endangered species [2]. UWA communications have also been used to detect structural damages on bridges and other civil structures to inform authorities of needed repair and have been used to monitor the vibration signatures of industrial equipment in fabrication plants to predict mechanical failures [3].

Underwater Acoustic (UWA) a kind of measuring and controlling system consisting of unmanned or autonomous underwater vehicles (UUVs/AUVs) and sensor nodes that have sensing, communication computing and moving capabilities.
UWA, which have the features of distributed space, distributed time and distributed function, is a typical autonomous and intelligent system which can independently accomplish specific tasks depending on the changing environment over a given volume of water.

UWAs are envisioned to enable applications for oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation and tactical surveillance applications [1]. Multiple unmanned or autonomous underwater vehicles (UUVs/AUVs), equipped with underwater sensors, will also find application in exploration of natural undersea resources and gathering of scientific data in collaborative monitoring missions. To make these applications viable, there is a primary need to enable underwater communications among underwater devices.

Acoustic communications are the typical physical layer technology in underwater systems. Wire communications are difficult to deploy and are unsuitable for moving. In fact, radio waves suffer from such high attenuation, while optical waves are affected by scattering and high precision in pointing the narrow laser beams. Acoustic wireless communications enable the UWA [2]. However, the complexity of underwater environment and Acoustic communications are the challenges to UWA. Hence, UWA have become a hot research topic.

The unique characteristics of the underwater acoustic communication channel, such as limited bandwidth capacity, high propagation delays and low reliability are time-variant, space-variant and frequency-variant[3]. Moreover, the ocean environment is dynamic and complex. Hence, theory analyses and precise simulation is difficult for UWA.

A few experimental implementations of underwater acoustic have been reported in the last few years. The Front-Resolving Observational Network with Telemetry (FRONT) project relies on acoustic telemetry and ranging advances pursued by the US Navy referred to as ‘telesonar’ technology [4]. The Seaweb
network for FRONT Oceanographic Sensors involves telesonar modems deployed in conjunction with sensors, gateways, and repeaters, to enable sensor-to-shore data delivery and shore-to-sensor remote control. Researchers from different fields gathered at the Monterey Bay Aquarium Research Institute in August 2003 and July 2006 to quantify gains in predictive skills for principal circulation trajectories, i.e., to study upwelling of cold, nutrient-rich water in the Monterey Bay, and to analyze how animals adapt to life in the deep sea. However, experiment research on UWA is elementary and seldom work on developing platform for UWA is reported according our knowledge.

In this project, we design and develop a physical experiment platform for UWA. The experiment platform consists of system control of UWA connection, which can complete point-to-point communication performance tests and end-to-end connection experiments. This platform serves as the testing and evaluating system of UWA, which is convenient, flexible and scalable. Based on this experiment platform, a lot experiments are made and a great deal of data on acoustic communication.

1.2 Problem Statement

Though commercial acoustic modems are available, there are not many to choose from and their proprietary nature makes customization of these products expensive or simply infeasible [13]. Researcher’s needs a better option to prototype their algorithms and further develop the field of underwater acoustic communication. In particular, the ability to add functionality to a proprietary system is difficult. For example, as researchers we wish to investigate designs with different parameters such as carrier frequency, bit rate, and packet size. To parameterize, commercial modems do not supply the flexibility and commercial modems do not furnish the flexibility to parameterize [15].

For Underwater Acoustic communication the design of the Modem is very important. There are many research on underwater modem for AUV and UUV but however there modem con not support variable modulation. By using SDR platform
user can add coding and varied the modulation to increase the throughput of the transmission.

Since the characteristics of the underwater acoustic channel cannot be properly modeled with a static configuration, it is important to be able to change the properties of an acoustic modem at run time. Underwater acoustic system has the flexibility of software defined radios (SDR) and the advantages of the network layers of GNU Radio and Linux, ultimately providing and end-to-end network for easy underwater development from the physical to application layer.

This thesis describes the full system of underwater acoustic modem with underwater wireless sensor connected to the most critical component of the system which is the USRP modem, hydrophone, and the USRP amplifier design circuit.

1.3 Research Objectives

The main objective of this research is to develop the circuit amplifier with the USRP platform test bed to enable the communications and prove the data is transfer. As a result, the objectives of the proposed research are:

- Develop and Design amplifier for Acoustic transmitter and receiver.
- Implement the amplifier on the USRP Platform.
- Implement the Underwater Acoustic transceiver system.
1.4 Scope of Work

The scope of this research is including exploring on how to use GNU Radio and USRP to construct the acoustic system communication. These includes: learning the python and C++ language, installing the GNU Radio software on Linux, and learn how to use it as the software that will control the USRP board in order to construct the acoustic system communication test bed. Second is the development of the amplifier circuit of the test bed that can configure its modulation according to the system communication of the channel. Third is integrate the circuit amplifier with the USRP platform test of UWA can be configured to improve the communication between the nodes by sensing the packets are bad or good condition. Next is to implement the acoustic system underwater network to prove the data is transfer. The experiment platform consists of system control of UWA connection, which can complete point-to-point communication performance tests and end-to-end connection experiments. This platform serves as the testing and evaluating system of UWA.

1.7 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 provides the relevant background for understanding the selection of using acoustic modems instead of RF modems for underwater communication based on the physics of the underwater environment, and also describes existing commercial and research underwater acoustic modems to illustrate the novelty and applicability of our design. Chapter 3 describes all the initial components experiment of the integration System spritely. Chapter 4 describes the USRP Amplifier design and why we need in our research and finally the integration system test results in the water tank. The final chapter concludes the outcomes of the research and proposes a few ideas for future works.