LITHIUM METAL OXIDES (METAL = MANGANESE, CHROME, COBALT, OR ALUMINIUM) AS CATHODE IN LITHIUM ION BATTERY

MD. MUHAMMAD MOKHLESUR RAHMAN

A thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

SEPTEMBER 2006
Spinel LiMn$_2$O$_4$ (CA-EG mixture assisted), LiMn$_2$O$_4$ (CA assisted), LiMn$_2$O$_4$ (PA assisted), Cr-doped LiCr$_x$Mn$_{2-x}$O$_4$ and layered LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA and PA assisted) cathode materials have been synthesized by a sol-gel method using organic acid as a chelating agent. This technique offers better homogeneity, preferred surface morphology, reduced heat treatment conditions, sub-micron sized particles and better crystallinity. The dependence of the physiochemical properties of the powder materials on the various calcination temperatures and organic acid quantity have been extensively studied. Electrochemical behaviors of the prepared powder materials were analyzed using galvanostatic charge-discharge cycling studies in the voltage range 3.0-4.3 V (vs. Li metal) using 1 M LiPF$_6$-EC/DMC as electrolyte. Materials LiMn$_2$O$_4$ (CA-EG mixture assisted), LiMn$_2$O$_4$ (CA assisted), LiMn$_2$O$_4$ (PA assisted), Cr-doped LiCr$_x$Mn$_{2-x}$O$_4$, LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA assisted) and LiCo$_{0.7}$Al$_{0.3}$O$_2$ (PA assisted) delivered initial discharge capacity of 29.66, 20.94, 41.65, 49.50, 97.34 and 74.43 mA h/g with the capacity retention of 71.4, 93.7, 90.6, 91.6, 90.8 and 98.4 % of its initial capacity over only 3rd cycle, respectively. Coulombic efficiency for the materials of LiMn$_2$O$_4$ (CA-EG mixture assisted), LiMn$_2$O$_4$ (CA assisted), LiMn$_2$O$_4$ (PA assisted), Cr-doped LiCr$_x$Mn$_{2-x}$O$_4$, LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA assisted) and LiCo$_{0.7}$Al$_{0.3}$O$_2$ (PA assisted) were found to be 96.2, 89.18, 74.8, 97.6, 92.8 and 94.7 % after only three cycles, respectively. Electrochemical evaluation shows that LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA assisted) materials exhibit higher initial discharge capacity whereas LiCo$_{0.7}$Al$_{0.3}$O$_2$ (PA assisted) materials exhibit a better capacity retention and good coulombic efficiency.
Bahan katod spinel LiMn$_2$O$_4$ (campuran bantuan CA-EG), LiMn$_2$O$_4$ (bantuan CA), LiMn$_2$O$_4$ (bantuan PA), LiCr$_x$Mn$_{2-x}$O$_4$ terdopkan Cr dan lapisan LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan CA dan PA) telah berjaya disintesis melalui teknik sol-gel menggunakan asid organik sebagai agen pengkelat. Teknik ini mampu memberikan kehomogenan yang lebih baik, kepilihan morfologi permukaan, pengurangan keadaan rawatan haba, partikel bersaiz sub-mikron dan penghabluran yang lebih baik. Pergantungan antara sifat fisiokimia bahan serbuk terhadap pelbagai suhu pengkalsinan dan kuantiti asid organik telah dikaji secara meluas. Sifat elektrokimia bahan serbuk yang telah disediakan diuji dengan kaedah kitaran cas-discas galvanostatik dengan julat voltan antara 3.0 hingga 4.3 V (terhadap logam Li) menggunakan 1 M LiPF$_{6}$-EC/DMC sebagai elektrolit. Bahan LiMn$_2$O$_4$ (campuran bantuan CA-EG), LiMn$_2$O$_4$ (bantuan CA), LiMn$_2$O$_4$ (bantuan PA), LiCr$_x$Mn$_{2-x}$O$_4$ terdopkan Cr, LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan CA) dan LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan PA) menghasilkan kapasiti discas permulaan sebanyak 29.66, 20.94, 41.65, 49.50, 97.34 dan 74.43 mA h/g dengan kapasiti penahanan sebanyak 71.4, 93.7, 90.6, 91.6, 90.8 dan 98.4 % daripada kapasiti permulaan selepas kitaran ketiga. Kecekapan coulomb bagi LiMn$_2$O$_4$ (campuran bantuan CA-EG), LiMn$_2$O$_4$ (bantuan CA), LiMn$_2$O$_4$ (bantuan PA), LiCr$_x$Mn$_{2-x}$O$_4$ terdopkan Cr, LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan CA) dan LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan PA) didapati sebanyak 96.2, 89.18, 74.8, 97.6, 92.8 dan 94.7 % selepas hanya tiga kitaran. Evolusi elektrokimia menunjukkan bahawa LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan CA) menunjukkan kapasiti discas permulaan yang tinggi manakala LiCo$_{0.7}$Al$_{0.3}$O$_2$ (bantuan PA) menunjukkan kapasiti penahanan dan kecekapan coulomb yang lebih baik.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>Historical Background of Secondary Batteries</td>
</tr>
<tr>
<td></td>
<td>1.1.1</td>
<td>Definition of Battery</td>
</tr>
<tr>
<td></td>
<td>1.1.2</td>
<td>Secondary Lithium Battery</td>
</tr>
<tr>
<td></td>
<td>1.1.3</td>
<td>Rechargeable Lithium-ion Battery</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Major Components of Cell and Battery</td>
</tr>
<tr>
<td></td>
<td>1.2.1</td>
<td>Chemistry of Positive Electrode</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Fundamentals of Electrochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>
1.3.1 Thermodynamic Background 12
 1.3.1.1 Theoretical voltage 13
 1.3.1.2 Theoretical capacity 13
 1.3.1.3 Free energy 14
1.3.2 Operation of a cell 15
 1.3.2.1 Discharge 15
 1.3.2.2 Charge 16
1.4 Cell Geometry 17
1.5 Battery Terminology 18
1.6 Scope of Research 18
1.7 Research Objectives 19
1.8 Problems Statement and Solution Approach 19
2 LITERATURE REVIEW 23
 2.1 Conventional and Advanced Methods to Prepare Cathode Raw Materials-A Brief Review 23
 2.2 Cathode Raw Materials for Lithium-ion Batteries 29
 2.2.1 LiMO₂ Materials 30
 2.2.1.1 LiCoO₂ 31
 2.2.1.2 LiNiO₂ 33
 2.2.1.3 LiMO₂ (M = Co, Ni) Derivatives 34
 2.2.2 Spinel Manganese Oxide 35
3 MATERIALS AND METHODS 39
 3.1 Chemicals and Reagents 39
 3.2 Instruments 40
 3.3 Research Design and Methodology 40
 3.4 Preparation of Cathode Raw Materials 42
 3.4.1 Sil-Gel Method 42
 3.4.2 CA-EG (Citric Acid-Ethylene Glycol) Mixture Assisted, Sil-Gel Route for the Preparation of LiMn₂O₄ Cathode Raw Materials 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.3</td>
<td>CA (Citric Acid) Assisted, Sol-Gel Route for the Preparation of LiMn$_2$O$_4$ Cathode Raw Materials</td>
<td>45</td>
</tr>
<tr>
<td>3.4.4</td>
<td>PA (Propionic Acid) Assisted, Sol-Gel Route for the Preparation of LiMn$_2$O$_4$ Cathode Raw Materials</td>
<td>46</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Preparation of Cr doped LiCrxMn${2-x}$O$_4$ ($x = 0.00, 0.01, 0.02, 0.05, 0.10, 0.20$) Cathode Raw Materials</td>
<td>47</td>
</tr>
<tr>
<td>3.4.6</td>
<td>CA (Citric Acid) and PA (Propionic Acid) Assisted, Sol-Gel Route for the Preparation of LiCo${0.7}$Al${0.3}$O$_2$ Cathode Raw Materials</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Characterizations of Prepared Cathode Raw Materials</td>
<td>49</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Determination of Surface Area</td>
<td>49</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Thermogravimetric-Differential Thermal Analysis (TG-DTA)</td>
<td>50</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Surface Morphology (Scanning Electron microscopy, SEM)</td>
<td>50</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Energy Dispersive X-ray Analysis (EDAX)</td>
<td>50</td>
</tr>
<tr>
<td>3.5.5</td>
<td>X-ray Diffraction (XRD) Analysis</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Cathode Preparation</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Cell Fabrication</td>
<td>52</td>
</tr>
<tr>
<td>3.8</td>
<td>Electrochemical characterization of Fabricated Cells</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Characterization of Prepared Cathode Raw Materials</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Characterizations</td>
<td>55</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Thermogravimetry-Differential Thermal Analysis (TG-DTA)</td>
<td>55</td>
</tr>
<tr>
<td>4.2.2</td>
<td>BET surface area</td>
<td>62</td>
</tr>
<tr>
<td>4.2.3</td>
<td>X-ray Diffraction Analysis (XRD)</td>
<td>68</td>
</tr>
</tbody>
</table>
4.2.4 Structure Analysis 77
4.2.5 Surface morphology 81
4.2.6 Energy Dispersive X-ray Analysis (EDAX) 87
4.3 Electrochemical Characterizations 98
 4.3.1 Charge-Discharge Studies 98
 4.3.2 Cycleability Studies 102
 4.3.3 Coulombic Efficiency 104
4.4 Overall Performance of the Fabricated Cells 106

5 CONCLUSIONS AND FUTURE INVESTIGATIONS 107
 5.1 Conclusions 107
 5.2 Scope and Limitations 109
 5.3 Recommendations for Future Study 109

REFERENCES 111
APPENDICES A –B 122
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Positive electrode materials and some of their characteristics</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Characteristics of rechargeable batteries</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Commercial rechargeable Li-ion batteries available in the market</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation conditions of various types of cathode raw materials</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>The BET surface area of the materials prepared from different calcination temperatures</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>The BET surface area for LiMn$_2$O$_4$ and Cr doped LiCrxMn${2-x}$O$_4$ powders prepared from different molar ratios of chelating agents to total metal ions and different dopant concentrations respectively</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>XRD results obtained on LiMn$_2$O$_4$ (CA-EG mixture assisted) materials calcined at 300, 400 and 450 °C with the molar ratio of CA-EG mixture to total metal ions of 1.0</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>XRD results obtained on LiCo${0.7}$Al${0.3}$O$_2$ (PA assisted) materials calcined at 350, 550 and 750 °C, where chelating agent concentration was 1 M</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Composition analysis of LiMn$_2$O$_4$ (CA-EG mixture assisted) materials calcined at 250, 400 and 450 °C.</td>
<td>94</td>
</tr>
</tbody>
</table>
4.6 Composition analysis of LiMn$_2$O$_4$ (CA assisted) materials calcined at 300 and 700 °C

4.7 Composition analysis of LiMn$_2$O$_4$ (PA assisted) materials calcined at 350 and 750 °C.

4.8 Composition analysis of Cr doped LiCr$_x$Mn$_{2-x}$O$_4$ materials calcined at 800 °C

4.9 Composition analysis of LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA and PA assisted) materials calcined at 350 and 750 °C

4.10 Cycleability data for the three cycles obtained from charge/discharge characterization of the A cell, B cell, C cell, D cell, E cell and F cell
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of a basic Li-Sn cell</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Electrochemical operation of cell (discharge)</td>
<td>15</td>
</tr>
<tr>
<td>1.3</td>
<td>Electrochemical operation of cell (charge)</td>
<td>16</td>
</tr>
<tr>
<td>1.4</td>
<td>Typical design of a cylindrical 18650 cell</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Structure of the rhombohedral elementary cell of LiMO$_2$ oxides</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of spinel unit cell (AB$_2$O$_4$)</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>The methodology scheme of overall research</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>A flow diagram of cathode raw materials preparation</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>A photograph of fabricated coin cell sample</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Model: CR2032, Diameter 20 mm, Thickness: 3.2 mm</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>TG-DTA curves for the gel precursors of LiMn$_2$O$_4$ (CA-EG Mixture Assisted) pretreated in vacuum dryer at 100 °C for 24 hours prior to calcination. Heating rate: 10 °C/min and N$_2$ flow 200 mL/min</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>TG-DTA curves for the gel precursors of LiMn$_2$O$_4$ (CA Assisted) pretreated in a vacuum dryer at 100 °C for 24 hours prior to calcination. Heating rate: 10 °C/min and N$_2$ flow 200 mL/min</td>
<td>58</td>
</tr>
</tbody>
</table>
4.3 TG-DTA curves for the gel precursors of LiMn$_2$O$_4$ (PA Assisted) pretreated in a vacuum dryer at 100 °C prior to thermal analysis in the air. Heating rate: 10 °C/min and N$_2$ flow 200 mL/min.

4.4 TG-DTA curves of the LiCr$_x$Mn$_{2-x}$O$_4$ ($x = 0.05$) grown by propionic acid assisted sol-gel technique. This measurement was carried out at a heating rate of 10 °C/min with N$_2$ flow rate of 200 mL/min.

4.5 TG-DTA curves for the gel precursors of LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA and PA assisted) pretreated in a vacuum dryer at 100 °C for 24 hours prior to calcination. Heating rate: 10 °C/min and N$_2$ flow 200 mL/min.

4.6 Dependence of the specific surface area for the (a) LiMn$_2$O$_4$ powders (CA-EG mixture assisted), (b) LiMn$_2$O$_4$ powders (CA assisted), (c) LiMn$_2$O$_4$ powders (PA assisted), (d) LiCo$_{0.7}$Al$_{0.3}$O$_2$ powders (CA assisted) and (e) LiCo$_{0.7}$Al$_{0.3}$O$_2$ powders (PA assisted) on the calcination temperatures.

4.7 Dependence of the specific surface area for the (a) LiMn$_2$O$_4$ powders (CA-EG mixture assisted), (b) LiMn$_2$O$_4$ powders (CA assisted) (c) LiMn$_2$O$_4$ powders (PA assisted) and d) Cr doped LiCr$_x$Mn$_{2-x}$O$_4$ powders on the molar ratios and dopant concentrations respectively.

4.8a XRD pattern for gel derived LiMn$_2$O$_4$ (CA-EG mixture assisted) materials calcined at 450 °C temperature for 5 hours in air, where the molar ratio of citric acid-ethylene glycol (CA-EG) mixture to total metal ions was 1.0.

4.8b XRD pattern for gel derived LiCo$_{0.7}$Al$_{0.3}$O$_2$ (PA assisted) materials calcined at 550 °C temperature for 5 hours in air, where chelating agent concentration was 1 molar.
4.9 a Stacking of X-ray diffraction patterns of LiMn₂O₄ (CA-EG mixture assisted) materials calcined at various temperatures on the molar ratio of citric acid-ethylene glycol (CA-EG) mixture to total metal ions of 1.0.

4.9 b Stacking of X-ray diffraction patterns of LiMn₂O₄ (CA assisted) materials calcined at various temperatures on the molar ratio of citric acid to total metal ions of 1.0.

4.9 c Stacking of XRD patterns of LiMn₂O₄ (PA assisted) materials calcined at various temperatures on the molar ratio of propionic acid to total metal ions of 1.5.

4.9 d Stacking of XRD patterns of LiCo₀.₇Al₀.₃O₂ (CA assisted) materials calcined at 350, 550 and 750 ºC.

4.9 e Stacking of XRD patterns of LiCo₀.₇Al₀.₃O₂ (PA assisted) materials calcined at 350, 550 and 750 ºC.

4.10 a Stacking of X-ray diffraction patterns of LiMn₂O₄ (CA-EG mixture assisted) materials calcined at 450 ºC for 5 hours at the molar ratio of citric acid-ethylene glycol mixture to total metal ions of (a) 0.25, (b) 0.50 and (c) 1.0.

4.10 b Stacking of X-ray diffraction patterns of LiMn₂O₄ (CA assisted) materials calcined at 600 ºC for 10 hours at the molar ratio of citric acid to total metal ions of (a) 0.5, (b) 1.0 and (c) 1.5.

4.10 c Stacking of X-ray diffraction patterns of LiMn₂O₄ (PA assisted) materials calcined at 350 ºC for 5 hours at the molar ratio of propionic acid to total metal ions of (a) 0.5, (b) 0.83, (c) 1.5, and (d) 2.0.

4.10 d Stacking of XRD patterns for Cr doped LiCrₓMn₂₋ₓO₄ materials calcined at 800 ºC for 4 hours at the dopant concentrations of x = 0.00, 0.01, 0.02, 0.05, 0.10, 0.20.
4.11 a Scanning electron micrographs of LiMn$_2$O$_4$ (CA-EG mixture assisted) powders calcined at (a) 250 °C, (b) 400 °C and (c) 450 °C where citric acid-ethylene glycol mixture to total metal ions was 1.0

4.11 b Scanning electron micrographs for LiMn$_2$O$_4$ (CA-EG mixture assisted) powders calcined the gel precursors of the molar ratio of citric acid-ethylene glycol mixture to total metal ions of (d) 0.25 and (e) 0.50 at 450 °C.

4.12 Scanning electron micrographs of LiMn$_2$O$_4$ (CA assisted) powders calcined at (a) 300 °C and (b) 700 °C where citric acid to total metal ions was 1.0

4.13 Scanning electron micrographs of LiMn$_2$O$_4$ (PA assisted) powders calcined at (a) 350 °C and (b) 750 °C where propionic acid to total metal ions was 1.5

4.14 Scanning electron micrographs for LiCr$_x$Mn$_{2-x}$O$_4$ materials calcined at 800 °C for 4 hours: (a) $x = 0.00$, (b) $x = 0.01$, (c) $x = 0.02$, (d) $x = 0.05$ and (e) $x = 0.20$

4.15 Scanning electron micrographs for the materials of LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA assisted) calcined at (a) 250 °C and (b) 550 °C and for the materials of LiCo$_{0.7}$Al$_{0.3}$O$_2$ (PA assisted) calcined at (c) 250 °C and (d) 550 °C, respectively.

4.16 a EDAX spectrum of LiMn$_2$O$_4$ (CA-EG mixture assisted) materials calcined at 250, 400 and 450 °C with citric acid-ethylene glycol mixture to total metal ions of 1.0

4.16 b EDAX spectrum of LiMn$_2$O$_4$ (CA-EG mixture assisted) materials calcined at 450 °C with citric acid-ethylene glycol mixture to total metal ions of 0.25, 0.50 and 1.0

4.17 EDAX spectrum of LiMn$_2$O$_4$ (CA assisted) materials calcined at 300 and 700 °C with citric acid to total metal ions of 1.0
4.18 EDAX spectrum of LiMn$_2$O$_4$ (PA assisted) materials calcined at (a) 350 °C and (b) 750 °C with propionic acid to total metal ions of 1.5

4.19 EDAX spectrum of Cr doped LiCr$_x$Mn$_{2-x}$O$_4$ materials calcined at 800 °C where dopant concentrations of $x = 0.00, 0.01, 0.02, 0.05, 0.20$

4.20 EDAX spectrum of LiCo$_{0.7}$Al$_{0.3}$O$_2$ (CA assisted) materials calcined at (a) 350 °C and (b) 750 °C

4.21 EDAX spectrum of LiCo$_{0.7}$Al$_{0.3}$O$_2$ (PA assisted) materials calcined at (a) 350 °C and (b) 750 °C

4.22 Charge-discharge characteristics with the number of cycles for the (a) A cell, (b) B cell, (c) C cell and (d) D cell where the raw materials calcined at 400, 700, 750 and 800 °C respectively. Cycling was carried out galvanostatically at constant charge-discharge current density of 0.2 mA/cm2 (200 µA) between voltage region 3.0 to 4.3 V

4.23 Charge-discharge characteristics with the number of cycles for the (e) E cell and (f) F cell where the raw materials calcined at 550 °C respectively. Cycling was carried out galvanostatically at constant charge-discharge current density of 0.2 mA/cm2 (200 µA) between voltage region 3.0 to 4.3 V

4.24 Cycleability for the A cell, B cell, C cell, D cell, E cell and F cell with a 0.2 mA/cm2 current density at the voltage range of 3.0-4.3 V

4.25 Coulombic efficiency for the A cell, B cell, C cell, D cell, E cell and F cell with the number of cycles.
LIST OF SYMBOLS

°C - Degree Celsius
θ - Scattering Angle
μ - Chemical Potential
e - Charge of an Electron
e⁻ - Electron
g - Gram
L - Liter
m - Meter
M - Molar
mA - Milliampere
Ah - Ampere hour
V - Voltage
mg - Milligram
min - Minute
Ai - Activity of Relevant Species
R - Gas Constant
T - Absolute Temperature
W h/g - Watt hour per gram
mA h/g - Milliampere-hour per gram
nm - Nanometer
E° - Standard Potential
F - Faraday Constant
ΔG° - Standard Free Energy
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Number of Electron</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer/Micron</td>
</tr>
<tr>
<td>µmol</td>
<td>Micromole</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLI</td>
<td>Starting-Lighting-Ignition</td>
</tr>
<tr>
<td>CA-EG</td>
<td>Citric Acid-Ethylene Glycol</td>
</tr>
<tr>
<td>CA</td>
<td>Citric Acid</td>
</tr>
<tr>
<td>EG</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>PA</td>
<td>Propionic Acid</td>
</tr>
<tr>
<td>PE</td>
<td>Positive Electrode</td>
</tr>
<tr>
<td>NE</td>
<td>Negative Electrode</td>
</tr>
<tr>
<td>NHE</td>
<td>Normal Hydrogen Electrode</td>
</tr>
<tr>
<td>PC</td>
<td>Propylene Carbonate</td>
</tr>
<tr>
<td>PEO</td>
<td>Polyethylene Oxide</td>
</tr>
<tr>
<td>EV/HEV</td>
<td>Electric Vehicles / Hybrid Electric Vehicles</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical Impedance Spectroscopy</td>
</tr>
<tr>
<td>EAS</td>
<td>Electro-analytical Study</td>
</tr>
<tr>
<td>SEI</td>
<td>Solid Electrolyte Interphase</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene Carbonate</td>
</tr>
<tr>
<td>DEC</td>
<td>Diethyl Carbonate</td>
</tr>
<tr>
<td>TG-DTA</td>
<td>Thermogravimetry-Differential Thermal Analysis</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett and Teller</td>
</tr>
<tr>
<td>EDAX</td>
<td>Energy Dispersive X-ray Analysis</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoelectron Spectra</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Polymer Electrolyte</td>
</tr>
<tr>
<td>Ni-Cd</td>
<td>Nickel Cadmium</td>
</tr>
<tr>
<td>NiM-H</td>
<td>Nickel Metal-Hydride</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductive Coupled Plasma</td>
</tr>
<tr>
<td>Li-ion</td>
<td>Lithium Ion</td>
</tr>
<tr>
<td>A cell</td>
<td>Li/1 M LiPF₆-EC/DMC/LiMn₂O₄ (CA-EG)</td>
</tr>
<tr>
<td>B cell</td>
<td>Li/1 M LiPF₆-EC/DMC/LiMn₂O₄ (CA)</td>
</tr>
<tr>
<td>C cell</td>
<td>Li/1 M LiPF₆-EC/DMC/LiMn₂O₄ (PA)</td>
</tr>
<tr>
<td>D cell</td>
<td>Li/1 M LiPF₆-EC/DMC/LiCrₓMn₂₋ₓO₄</td>
</tr>
<tr>
<td>E cell</td>
<td>Li/1 M LiPF₆-EC/DMC/LiCo₀.₇Al₀.₃O₂ (CA)</td>
</tr>
<tr>
<td>F cell</td>
<td>Li/1 M LiPF₆-EC/DMC/LiCo₀.₇Al₀.₃O₂ (PA)</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1</td>
<td>In details Report of Li/1 M LiPF6-EC/DMC/LiCo${0.7}$Al$_{0.3}$O$_2$ (CA assisted) [E cell] Cell Test Data for the First Cycle Charge</td>
<td>122</td>
</tr>
<tr>
<td>A 2</td>
<td>In details Report of Li/1 M LiPF6-EC/DMC/LiCo${0.7}$Al$_{0.3}$O$_2$ (CA assisted) [E cell] Cell Test Data for the First Cycle Discharge</td>
<td>139</td>
</tr>
<tr>
<td>A 3</td>
<td>In details Report of Li/1 M LiPF6-EC/DMC/LiCo${0.7}$Al$_{0.3}$O$_2$ (CA assisted) [E cell] Cell Test Data for the 2nd Cycle Charge</td>
<td>147</td>
</tr>
<tr>
<td>A 4</td>
<td>In details Report of Li/1 M LiPF6-EC/DMC/LiCo${0.7}$Al$_{0.3}$O$_2$ (CA assisted) [E cell] Cell Test Data for the 2nd Cycle Discharge</td>
<td>156</td>
</tr>
<tr>
<td>A 5</td>
<td>In details Report of Li/1 M LiPF6-EC/DMC/LiCo${0.7}$Al$_{0.3}$O$_2$ (CA assisted) [E cell] Cell Test Data for the 3rd Cycle Charge</td>
<td>164</td>
</tr>
<tr>
<td>A 6</td>
<td>In details Report of Li/1 M LiPF6-EC/DMC/LiCo${0.7}$Al$_{0.3}$O$_2$ (CA assisted) [E cell] Cell Test Data for the 3rd Cycle Discharge</td>
<td>172</td>
</tr>
</tbody>
</table>
Performance Data of Synthesized Cathode Materials and Commercial Positive Electrode Materials (LiCoO₂) Used by Different Manufacturers
1.1 Historical Background of Secondary Batteries

Secondary batteries have been in existence for over 100 years. The lead-acid battery was developed in 1859 by Plante. It is still the most widely used battery, albeit with many design changes and improvements, with the automotive SLI battery by far the dominant one. The nickel-iron alkaline battery was introduced by Edison in 1908 as a power source for the early, but short-lived, electric automobile. The pocket-plate nickel-cadmium battery has been manufactured since 1909 and was used primarily for heavy-duty industrial applications. As with the primary battery systems, significant performance improvements have been made with the older secondary battery systems, and a number of newer types, such as the silver-zinc, the nickel-zinc, the hydrogen, lithium, and halogen batteries, and the high temperature systems, have been introduced into commercial use or serious development (Linden, 1994).

1.1.1 Definition of Battery

A battery is a device that converts chemical energy contained in its active materials to electric energy by means of spatially separated electrochemical oxidation and reduction reactions. The overall (redox) reaction occurs by electron
transfer from negative electrode material to positive electrode material through an external electrical circuit. In a non-electrochemical redox reaction, such as rusting or burning, the transfer of electrons occurs locally and chemical energy is converted to heat only. Although the terms “cell and battery” are often used interchangeably, the basic electrochemical reactor is the “cell” consisting of a single set of positive and negative electrodes.

Batteries can be divided into primary (non-rechargeable) and secondary (rechargeable) batteries according to the capability of electrical regeneration after chemical energy has been converted fully to electrical energy during discharge. Primary batteries cannot be recharged, i.e. the electrochemical reaction cannot be reversed. Hence, they are discharged once and discarded or recycled chemically. Nevertheless primary batteries have found many applications due to shelf life, high energy density at low to moderate discharge rate, compactness, and ease of use. Secondary batteries, also referred to as rechargeable batteries, are systems in which the electrochemical reaction can be reversed by passing current through the battery in the direction opposite of that of discharge. Although this is, in principle, possible for all batteries at very low rates i.e. practically useful secondary batteries are characterized by relatively high power density in charge as well as discharge, flat discharge curves, and acceptable low temperature performance. Moreover, rechargeable batteries have an advantage over primary batteries from an environmental point of view, because they are inherently being “recycled”.

1.1.2 Secondary Lithium Battery

Secondary lithium batteries have the same geometry and components as primary ones but both electrodes function as secondary lithium electrodes, for example by lithium intercalation in the electrode material on either side. Almost at the same time that primary lithium batteries were introduced, it was discovered that lithium could be inserted or intercalated reversibly in several compounds, which makes it possible to use these compounds as insertion cathodes in rechargeable lithium batteries. The choice of materials that can be used for the insertion cathode is
relatively wide. The best cathodes for secondary lithium batteries are those where bonding with lithium occurs at low energy levels and the structural modification of the active materials during lithium insertion/extraction is minimal (such insertion reactions are typical for certain 2-D lattices, in which case they are called intercalation reaction).

Table 1.1 shows characteristics of some of the compounds that have been used in lithium secondary batteries.

Table 1.1: Positive electrode materials and some of their characteristics (Hossain, 1995).

<table>
<thead>
<tr>
<th>Materials</th>
<th>Average voltage (V)(^a)</th>
<th>Practical specific energy (W h/kg)</th>
<th>Lithium /mole</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS(_2)</td>
<td>1.7</td>
<td>230</td>
<td>0.8</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>MnO(_2)</td>
<td>3.0</td>
<td>650</td>
<td>0.7</td>
<td>Inexpensive</td>
</tr>
<tr>
<td>LiCoO(_2)</td>
<td>3.7</td>
<td>500</td>
<td>0.5</td>
<td>Good for lithium ion system</td>
</tr>
<tr>
<td>LiNiO(_2)</td>
<td>3.5</td>
<td>480</td>
<td>0.5</td>
<td>Good for lithium ion system</td>
</tr>
<tr>
<td>LiMn(_2)O(_4)</td>
<td>3.8</td>
<td>450</td>
<td>0.8</td>
<td>Good for lithium ion system</td>
</tr>
<tr>
<td>V(_6)O(_13)</td>
<td>2.3</td>
<td>300</td>
<td>2.5</td>
<td>Good for SPE system</td>
</tr>
<tr>
<td>V(_2)O(_5)</td>
<td>2.8</td>
<td>490</td>
<td>1.2</td>
<td>Good for SPE system</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>3.1</td>
<td>220</td>
<td>0.33</td>
<td>Toxic electrolyte, good for pulse power application</td>
</tr>
<tr>
<td>CuCl(_2)</td>
<td>3.3</td>
<td>660</td>
<td>1</td>
<td>Toxic electrolyte, good for pulse power application</td>
</tr>
<tr>
<td>Polyaniline</td>
<td>3.2</td>
<td>340</td>
<td>1</td>
<td>For polymer electrodes</td>
</tr>
<tr>
<td>Polypyrrole</td>
<td>3.2</td>
<td>280</td>
<td>1</td>
<td>For polymer electrodes</td>
</tr>
</tbody>
</table>

\(^a\)Voltage vs. Lithium metal
During the 1970s and 80s many researchers were involved in programs to develop rechargeable batteries. However, until 1990, only small-scale rechargeable coin cells survived in the market despite their advantage over conventional systems in terms of energy density and environmental control. On the other hand, primary lithium batteries captured a significant market in various size and capacities. The major reasons for the small market share of rechargeable lithium batteries with lithium metal NE were their limited cycleability and, especially, potential safety hazards. The limited cycleability means that, although lithium metal may be plated with almost 100 % efficiency during charging in propylene carbonate (Chilton et al., 1965; Selim and Bro, 1974), it can not be stripped (oxidized during discharge) as efficiently, particularly if stripping does not immediately follow deposition and the deposit is allowed to stand in contact with solution.

Although a lithium plate becomes less electro-strippable upon standing, it is mostly still in the form of metal (Selim and Bro, 1974). This metal layer has become electrically isolated from the substrate by ionically conducting layer, which forms due to corrosion (Li oxidation under reduction of electrolyte). Therefore, the lithium layer is effectively passivated. Passivation prevents further corrosion but the passivating film cause an increase in the internal cell resistance and release of corrosion products. Thus cycle by cycle, the morphology deteriorates and the plating (charging)-stripping (discharging) efficiency decreases. Moreover, the most deleterious effect of the (non-uniform) passivation layer is that it causes nonuniform lithium plating during the charging process, to an extent which may ultimately lead to total cell failure (due to dendritic short circuiting) or even to serious safety hazard (due to local over heating).

1.1.3 Rechargeable Lithium-ion Battery

There are four major rechargeable batteries currently in use (Abraham, 2001): the lead-acid battery (Pb-Acid), the nickel-cadmium battery (Ni-Cd), the nickel metal-hydride batteries (NiM-H) and the lithium-ion batteries (Li-ion). The lead-acid and nickel-cadmium batteries have a very long history of consumer use.
The nickel metal-hydride and lithium-ion are relatively new battery systems having come into existence in the early nineteen nineties. The first three batteries contain water-based (aqueous) electrolytes, whereas the lithium-ion battery utilizes electrolytes composed of lithium salt solutions in organic (non-aqueous) solvents. The Li-ion battery has many advantages over the three aqueous electrolyte-based systems (See Table 1.2) and these include:

a) Two to three times higher voltage per single cell

b) Two to five times higher specific energy, i.e., watt-hours per kilogram (W h/kg) of battery weight, and two to four times higher energy density, i.e., watt-hours per liter (W h/l) of battery volume.

c) Low self-discharge and long shelf life, i.e., the battery does not lose a significant amount of its capacity while sitting idle on the shelf.

d) No memory effect, i.e., the available capacity in a fully charged Li-ion battery is independent of its operational history, unlike the Ni-Cd system.

e) Long charge-discharge cycle life. Li-ion batteries are capable of 500-1000 cycles at full depth of discharge.

Due to these advantages Li-ion batteries are increasingly becoming the battery of choice for portable consumer products such as cellular telephones and notebook computers.

Table 1.2: Characteristics of rechargeable batteries

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Li-ion</th>
<th>NiM-H</th>
<th>Ni-Cd</th>
<th>Small Pb-Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (V)</td>
<td>3.6</td>
<td>1.2</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Specific Energy</td>
<td>150</td>
<td>90</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>(W h/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Density</td>
<td>350</td>
<td>300</td>
<td>180</td>
<td>80</td>
</tr>
<tr>
<td>(W h/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Cycles</td>
<td>>1000</td>
<td>>1000</td>
<td>1500</td>
<td>500</td>
</tr>
</tbody>
</table>
As result of the proliferation of these and other portable consumer products, the Li-ion battery business is expected to generate tens of billions of US dollars in sales in the not too distant future.

In lithium-ion batteries, the metallic lithium anode is replaced with a lithium insertion electrode consisting of carbon material. The introduction of carbon as an anode material and the development of insertion-type cathode materials have produced substantial improvements in energy density, cycleability, cost, and safety of secondary lithium batteries. In 1990 Sony Inc. introduced the first generation of lithium-ion batteries without metallic lithium (Ngaura et al., 1990). The new concept and the excellent characteristics of the “lithium-ion” battery were enough to obtain worldwide attention. A very large research effort continues in this field, after the first generation of lithium-ion batteries. Table 1.3 shows some of the current lithium-ion battery makers and their product line.

Table 1.3: Commercial rechargeable Li-ion batteries available in the market (Kim, 2001)

<table>
<thead>
<tr>
<th>Manufac.</th>
<th>Type of cathode</th>
<th>Type of anode</th>
<th>Dimension (mm)</th>
<th>Capacity (mA h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toshiba (A&T)</td>
<td>LiCoO₂</td>
<td>Graphite</td>
<td>Φ17×50–Φ18.3×65</td>
<td>740–1350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coke</td>
<td>6.3×30×4.8–14.5×34×48</td>
<td>500–1600</td>
</tr>
<tr>
<td>Sony</td>
<td>LiCoO₂</td>
<td>Hard carbon</td>
<td>8.0×33.7×48×1–10.0×34.1×47.2</td>
<td>500–2800</td>
</tr>
<tr>
<td></td>
<td>LiNi₀.₅Co₀.₅O₂</td>
<td>Graphite</td>
<td>Φ14×42.8–Φ26.3×65.4</td>
<td></td>
</tr>
<tr>
<td>Sanyo</td>
<td>LiCoO₂</td>
<td>Graphite</td>
<td>Φ14×50–Φ18×65</td>
<td>580–1600</td>
</tr>
<tr>
<td>Panasonic</td>
<td>LiCoO₂</td>
<td>Soft Carbon</td>
<td>Φ17×49.5–Φ18.3×64.7</td>
<td>830–1800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphite</td>
<td>29.8×47.5×6.4–34×49.8×10.4</td>
<td>630–1550</td>
</tr>
<tr>
<td>E-One (Moli)</td>
<td>LiMn₂O₄</td>
<td>Graphite</td>
<td>Φ18.2×65,Φ26.0×65</td>
<td>1400–320</td>
</tr>
<tr>
<td></td>
<td>LiCoO₂</td>
<td>-</td>
<td>8.6×34×48</td>
<td>1000</td>
</tr>
</tbody>
</table>

Manufac. = Manufacturer
As the result of that, many parts have been improved. So far, more than 10 major companies are sharing the market and more companies are expected to enter shortly, as they are still in the phase of developing and engineering.

The lithium-ion battery industry is growing fast as consumer electronic companies demand smaller and lighter energy storage device with high energy density. Many battery manufacturers are pursuing the development of lithium ion battery packs for application to electric vehicles. In 1998 Nissan and Sony Corporation released the first electric vehicle fleet model, which is powered by a lithium-ion battery (Kim, 2001). The battery pack consists of 12 modules and each module contains 8 cylindrical cells encased in a resin module. Each battery has a built-in cell controller to ensure that each cell is operating within a specific voltage range of 2.5 V and 4.2 V during cycling. Total battery pack capacity is 94 A h and voltage is 345 V.

1.2 Major Components of Cell and Battery

A battery consists of one or more of cells, connected in series or parallel, or both, depending on the desired output voltage and capacity. The cell consists of three major components as below:

a) **The cathode or positive electrode:** It is oxidizing electrode which accepts electrons from the external circuit and is reduced during the electrochemical reaction.

b) **The anode or negative electrode:** It is reducing or fuel electrode which gives up electrons to the external circuit and is oxidized during the electrochemical reaction.

c) **The electrolyte:** It is ionic conductor which provides the medium for transfer of electrons, as ions, inside the cell between the anode and cathode. The electrolyte is typically a liquid, such as water or other solvents, with dissolved salts, acids or alkalis to impart ionic conductivity.
The cathode must be an efficient oxidizing agent, be stable when in contact with the electrolyte, and have a useful working voltage. However, many of the cathode materials are metallic oxides, while other cathode materials are used for advanced battery systems giving high voltage and capacity.

In a practical system, the anode is selected with the following properties in mind: efficiency as a reducing agent, high columbic output (A h/g), good conductivity, stability, ease of fabrication, and low cost.

The electrolyte must have good ionic conductivity but not be electrically conductive, as this would cause internal short circuiting. Other important characteristics are nonreactivity with the electrode materials, little change in properties with change in temperature, safeness in handling, and low cost.

Physically the anode and cathode electrodes are electronically isolated in the cell to prevent internal short circuiting, but are surrounded by the electrolyte. In practical cell designs a separator material is used to separate the anode and cathode electrodes mechanically. The separator, however, is permeable to the electrolyte in order to maintain the desired ionic conductivity. In some cases the electrolyte is immobilized for non spill design.

1.2.1 Chemistry of Positive Electrode

The process, however, is even more complex for rechargeable batteries as the cell chemistry must be reversible and the reactions that occur during recharge affect all of the characteristics and the performance on subsequent cycling.

There is a relatively wide choice of materials that can be selected for the positive electrodes of lithium batteries. However, many of these, which involve reactions which break and rearrange bonds during discharge, cannot be readily reversed and are limited to primary nonrechargeable batteries. The best cathodes for
rechargeable batteries are those where there is little bonding and structural modification of the active materials during the discharge-charge reaction (Scrosati et al., 1993).

Intercalation Compounds: The insertion or intercalation compounds are among the most suitable cathode materials. In these compounds, a guest species such as lithium can be inserted interstitially into the host lattice (during discharge) and subsequently extracted during recharge with little or no structural modification of the host. The intercalation process involves three principal steps:

a) Diffusion or migration of solvated Li\(^+\) ions
b) Desolvation and injection of Li\(^+\) ions into the vacancy structure
c) Diffusion of Li\(^+\) ions into the host structure

The electrode reactions which occur in a Li\(/
\text{Li}_x\text{(HOST)}\) cell, where (HOST) is an intercalation cathode, are

\[
y \text{Li} \quad \leftrightarrow \quad y \text{Li}^+ + y \text{e}^- \quad \text{at the Li metal anode}
\]

\[
y \text{Li}^+ + y \text{e}^- + \text{Li}_x\text{(HOST)} \quad \leftrightarrow \quad \text{Li}_{x+y}\text{(HOST)} \quad \text{at the cathode}
\]

Leading to overall cell reaction of

\[
y \text{Li} + \text{Li}_x\text{(HOST)} \quad \leftrightarrow \quad \text{Li}_{x+y}\text{(HOST)}
\]

A number of factors have to be considered in the choice of the intercalation compound, such as reversibility of the intercalation reaction, cell voltage, variation of the voltage with the state of the charge, availability and cost of the compound. The key requirements for positive-electrode intercalation materials (Li\(_x\text{MO}_z\)) used in lithium cells are given below:

1) High free energy of reaction with lithium
2) Wide range of \(x\) (amount of intercalation)
3) Little structural change upon reaction
4) Highly reversible reaction
5) Rapid diffusion of lithium in solid
6) Good electronic conductivity
7) No solubility in electrolyte
8) Readily available or easily synthesized from low cost reactants

Transition metal oxides, sulfides (MoS\(_2\), TiS\(_2\)), and selenides (NbSe\(_3\)) are used in lithium rechargeable batteries. The LiMn\(_2\)O\(_4\) spinel framework possesses a three
dimensional space via face sharing octahedral and tetrahedral structures, which provide conducting pathways for the insertion and extraction of lithium ions. The removal and insertion of the lithium ion for the three lithiated transition metal oxides are

\[
\begin{align*}
\text{LiCoO}_2 & \quad \text{Li}_{1-x}\text{CoO}_2 + x \text{Li}^+ + x e^- \\
\text{LiNiO}_2 & \quad \text{Li}_{1-x}\text{NiO}_2 + x \text{Li}^+ + x e^- \\
\text{LiMn}_2\text{O}_4 & \quad \text{Li}_{1-x}\text{Mn}_2\text{O}_4 + x \text{Li}^+ + x e^-
\end{align*}
\]

The reversible value of \(x \) for LiCoO\(_2\) and LiNiO\(_2\) is less than or equal to 0.5, and the value is greater than or to 0.85 for lithiated manganese oxide. Thus although the theoretical capacity of LiCoO\(_2\) and LiNiO\(_2\) (274 mA h /g) is almost twice as high as that of LiMn\(_2\)O\(_4\), the reversible capacity of the three cathode materials is about the same (135 mA h/g). In the long run it is expected that the manganese-based compounds will become the material of choice as they are more abundant, less expensive, and non-toxic.

1.3 Fundamentals of Electrochemistry

Electrochemistry includes the study of chemical properties and reactions involving ions either in solution or in solids. In order to study these properties, generally electrochemical cells are constructed. Typical cell consists of two solid electrodes, the cathode and anode, in contact with an ionic conducting electrolyte. To prevent cell self-discharge, an electronically insulating material that is permeable to the working ions physically separates the electrodes. The two electrodes are put in electrical contact by an external electronically conductive wire. Two different types of electrochemical cells can be defined: electrolytic cells, and galvanic cells. In electrolytic cells an applied electrical current causes the active material to undergo decomposition; a process corresponding to the conversion of electrical energy to chemical energy. Galvanic cells, however, are capable of converting chemical energy into electrical energy. Galvanic cells generate electrical energy by the spontaneous electrode reactions that give rise to electrical current.
To understand the lithium-ion battery it is useful to consider a simple Li cell, Figure 1.1

![Schematic of a basic Li-Sn cell](image)

Figure 1.1: Schematic of a basic Li-Sn cell

The reaction for a cell with a negative Li-metal electrode and a positive tin (Sn) electrode is presented below. This cell is very important to the rest of the thesis, so it a good place to start. The discharge of a Li-Sn cell involves two half cell reactions. During discharge of a lithium cell, Li\(^+\) ions are generated at the anode/electrolyte interface, and Li\(^-\) is inserted into the cathode structure at the cathode/electrolyte interface. The electrode reactions are given below.

\[
\text{n Li} \rightarrow \text{n Li}^+ + \text{n e}^- \quad \text{(Negative) [Oxidation Reaction]}
\]

\[
\text{n Li}^+ + \text{Sn} + \text{n e}^- \rightarrow \text{Li}_n\text{Sn} \quad \text{(Positive) [Reduction Reaction]}
\]

The full cell reaction is:

\[
\text{n Li} + \text{Sn} \rightarrow \text{Li}_n\text{Sn} \quad \text{(Full Cell)}
\]

The difference in chemical potential (\(\mu\)) of Li in the negative electrode compared to the positive electrode drives the reaction. The voltage difference between the electrodes is given by:

\[
V = \frac{(\mu \text{ positive} - \mu \text{ negative})}{e}
\]
where e is the magnitude of the charge on an electron. To charge the cell the reaction must be reversed. Energy is required to remove Li from Sn and re-deposit it onto the negative electrode, recharging the cell. The roles of the cathode and anode are reversed when the battery is being charged.

1.3.1 Thermodynamic Background

In a cell, reactions essentially take place at two areas or sites in the device. These reaction sites are the electrodes. In generalized terms, the reaction at one electrode (reduction in the forward direction) can be represented by:

\[aA + ne \xrightarrow{} cC \]
\[a \] molecules of A take up \(n \) electrons e to form \(c \) molecules of C. At the other electrode, the reaction (oxidation in forward direction) can be represented by:

\[bB - ne \xrightarrow{} dD \]
\[b \] molecules of B lose \(n \) electrons e to form \(d \) molecules of D.

The overall reaction in the cell is given by addition of these two half cell reactions

\[aA + bB \xrightarrow{} cC + dD \]
\[a + b \] molecules of A and B react to form \(c \) molecules of C and \(d \) molecules of D.

The change in the standard free energy \(\Delta G^o \) of this reaction is expressed as

\[\Delta G^o = - nFE^o \]
where \(F \) = constant known as Faraday (96,487 C)

\(E^o \) = standard electromotive force

\(n \) = number of electrons involved in stoichiometric reaction

When conditions are other than in the standard state, the voltage \(E \) of a cell is given by the Nernst equation,

\[E = E^o - \frac{RT}{nF} \ln \frac{a^c \cdot a^d}{a^a \cdot a^b} \]
\(a_i \) = activity of relevant species

\(R \) = gas constant

\(T \) = absolute temperature
The change in the standard free energy ΔG° of a cell reaction is the driving force which enables a battery to deliver electric energy to an external circuit. The measurement of the electromotive force, incidentally, also make available data on changes in free energy, namely, entropies and enthalpies together with activity coefficients, equilibrium constants, and solubility products. Direct measurement of single (absolute) electrode potentials is considered practically impossible. To establish a scale of cell or standard potentials, a reference potential “Zero” must be established against which single electrode potentials can be measured. By convention, the standard potential of the $\text{H}_2/\text{H}^+(\text{aq})$ reaction is taken as zero and all standard potentials are referred to this potential.

1.3.1.1 Theoretical voltage

The standard potential of the cell is determined by its active materials and can be calculated from free energy data or obtained experimentally. The standard potential of a cell can also be calculated from the standard electrode potentials as follows (the oxidation potential is the negative value of the reduction potential):

Anode (oxidation potential) + cathode (reduction potential) = standard cell potential

For example, in the reaction $\text{Zn} + \text{Cl}_2 \rightarrow \text{ZnCl}_2$

\[
\text{Zn} \rightarrow \text{Zn}^{2+} + 2\text{e}^- \quad (-0.76 \text{ V})
\]
\[
\text{Cl}_2 \rightarrow 2\text{Cl}^- + 2\text{e}^- \quad 1.36 \text{ V}
\]

The cell voltage is also dependent on other factors, including concentration, temperature etc.

1.3.1.2 Theoretical capacity

The capacity of a cell is expressed as the total quantity of electricity involved in the electrochemical reaction and is defined in terms of coulombs or ampere-hours. The “ampere-hour capacity” of a battery is directly associated with the quantity of
electricity obtained from the active materials. Theoretically 1 gm-equivalent weight of material will deliver 96,487 C or 26.8 A h. (A gram-equivalent weight is the atomic or molecular weight of the active material in grams divide by the number of electrons involved in the reaction). The theoretical capacity of a battery system, based only on the active materials participating in the electrochemical reaction, is calculated from the equivalent weight of the reactants. Hence the theoretical capacity of the Zn/Cl₂ system is 0.394 A h / g, that is,

\[
\begin{align*}
Zn & + Cl_2 \rightarrow ZnCl_2 \\
0.82 \text{ A h / g} & + 0.76 \text{ A h / g} \\
1.22 \text{ g / A h} & = 2.54 \text{ g / A h} \text{ or } 0.394 \text{ A h / g}
\end{align*}
\]

The capacity of battery is also considered on an energy (Watt hour) basis by taking the voltage as well as the quantity of electricity into consideration,

Watt hour (W h) = voltage (V) × ampere-hour (A h)

In the Zn / Cl₂ cell example, if the standard potential is taken as 2.12 V, the theoretical watt hour capacity per gram of active material (theoretical gravimetric energy density) is Watt hour / gram capacity = 2.12 V × 0.395 A h/g = 0.838 W h /g

Similarly, the ampere-hour or watt hour capacity on a volume basis, can be calculated by using the appropriate data for ampere-hours per cubic centimeter.

1.3.1.3 Free energy

Whenever a reaction occurs, there is a decrease in the free energy of the system, which is expressed as

\[G^\circ = - nFE^\circ \]

where \(F = \) constant known as Faraday (\(\approx 96,500 \) C or 26.8 A h)\n
\(n = \) number of electrons involved in stoichiometric reaction

\(E^\circ = \) standard potential, V
1.3.2 Operation of a cell

A battery consists of one or more cells, connected in series or parallel, or both, depending on the desired output voltage and capacity.

1.3.2.1 Discharge

The operation of a cell during discharge is shown schematically in the Figure 1.2.

When the cell is connected to an external load, electrons flow from the anode, which is oxidized, through the external load to the cathode, where the electrons are accepted and the cathode material is reduced. The electric circuit is completed in the electrolyte by the flow of anions (negative ions) and cations (positive ions) to the anode and cathode, respectively. The discharge reaction can be written, assuming a metal as the anode material and a cathode material such as chlorine (Cl₂), as follows

Negative electrode: anodic reaction (oxidation, loss of electrons)

\[\text{Zn} \rightarrow \text{Zn}^{2+} + 2e^- \]
Positive electrode: cathodic reaction (reduction, gain of electrons)

\[\text{Cl}_2 + 2e^- \rightarrow 2\text{Cl}^- \]

Overall reaction (discharge):

\[\text{Zn} + \text{Cl}_2 \rightarrow \text{Zn}^{2+} + 2\text{Cl}^- \ (\text{ZnCl}_2) \]

1.3.2.2 Charge

During the recharge of a rechargeable or storage battery, the current flow is reversed and oxidation takes place at the positive electrode and reduction at the negative electrode, as shown in Figure 1.3. As the anode is, by definition, the electrode at which oxidation occurs and cathode the one where reduction takes place, the positive electrode is now the anode and the negative the cathode.

![Electrochemical operation of cell (charge)](Diagram)

Figure 1.3: Electrochemical operation of cell (charge)

In the example of the Zn/Cl\(_2\) cell, the reaction on charge can be written as follows:

Negative electrode: cathodic reaction (reduction, gain of electrons)

\[\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \]

Positive electrode: anodic reaction (oxidation, loss of electrons)

\[2\text{Cl}^- \rightarrow \text{Cl}_2 + 2e^- \]

Overall reaction (charge):

\[\text{Zn}^{2+} + 2\text{Cl}^- \rightarrow \text{Zn} + \text{Cl}_2 \]
1.4 Cell Geometry

The basic cell chemistry and design are the same for all types of Li-ion batteries. Figure 1.4 shows a typical cell design. Thin layers of cathode (positive), separator, and anode (negative) are rolled up on a central mandrel and inserted into a cylindrical can. The gaps are filled with liquid electrolyte. The basic design remains unchanged on substitution of one electrode material for another, although the layer thickness might change. This is the same design used for most small commercial cells, like the 18650 (18 mm in diameter, 65 mm long) used in devices such as camcorders and laptops.

![Typical design of a cylindrical 18650 cell](image)

Figure 1.4: Typical design of a cylindrical 18650 cell (Beaulieu, 2002)

The lithium-ion cell can be designed in any of the typical cell constructions: flat or coin, spirally wound cylindrical, or prismatic configurations. While most of the developments to date have concentrated on the smaller cells for portable applications.
1.5 Battery Terminology

What we commonly call a battery is actually a cell. Strictly speaking a battery is a collection of individual cells, typically connected in series (i.e., car battery). In this thesis, the terms battery and cell will be used interchangeably. Discharge capacity, quoted in ampere-hours (A h), is equal to the amount of charge delivered during discharge. The average voltage at which the charge is delivered defines the amount of energy in the battery, where energy is the product of total capacity and average voltage (W h). Specific energy is the energy per unit mass (W h/kg). Energy density is the energy per unit volume (W h/L). Specific capacity describes the capacity per unit mass (mA h/g). Volumetric capacity describes the capacity per unit volume (mA h/cc). The terms anode and cathode refer to the direction of charge transfer at the interface between the electrode and the solution, strictly speaking, the terms should be interchanged during recharging. Potential confusion is avoided by simply referring to the electrodes as negative or positive. Cycling refers to repeated charge-discharge cycles. The host materials may be fully, or only partially, charged/discharged during cycling. Cycleability refers to the battery’s ability to perform numerous cycles without appreciable loss of original capacity.

1.6 Scope of Research

The project includes the synthesis and characterization of new intercalation materials, and their processing into battery electrodes in the form of pellets, in order to develop accumulators exploiting lithium ion technology. The scope of this research is to synthesize various types of cathode materials from metal salts (as a metal source) and organic solvents (as a chelating agent). The synthesized cathode materials will be characterized by different analyses and instrumental techniques such as TGA-DTA (thermogravimetric-differential thermal analysis), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), and Brunauer-Emmett and Teller (BET) surface area. The synthesized cathode materials used as the composite electrodes after cathode
fabrication. The synthesized cathodes were also characterized using various types of electro-analytical techniques and the results were compared with those of the parent cathode materials. The final step of the research is that the synthesized cathode electrodes were examined systematically in order to evaluate electrochemical performances of the lithium ion rechargeable battery. The focus of this work is on the development of a desirable cathode or positive electrode materials for lithium-ion batteries.

1.7 Research Objectives

Particularly the development of the active cathode materials preparation method is based on the trial and error approach guided by the background reading of the previous processes and reviewed articles. The following objectives have been addressed to testify the hypothesis:

1. To synthesize new mixture of metal oxides for the cathode portion of Li-ion battery
2. To make right combination of lithium with transition or nontransition metals by sol-gel method
3. To characterize the synthesized materials with numerous techniques in order to investigate the changes of physical and chemical properties
4. To increase the practical voltage around the theoretical voltage (6 volts)
5. To increase coulombic efficiency of Li-ion battery

1.8 Problems Statement and Solution Approach

The increased demand for power distribution systems, portable electronics and zero emission vehicles has led to the examination of the electrochemical battery as a solution to our energy storage needs. In particular, the rapid development in the
field of portable electronics including laptop computers, camcorders, cell phones and wireless communication devices require high energy density batteries to power them. Consumers have simple demands; they want a long lasting, lightweight, cheap, and safe battery. To meet these demands, the development of rechargeable (secondary) batteries has been the focus of considerable research. Portable, rechargeable lithium ion batteries offer several advantages when compared to current primary and secondary power sources. Lithium ion batteries have higher cell voltages 3.5-4.2 V (Plicht *et al.*, 1987; Megahed *et al.*, 1995; Berndt, 1997), higher energy density and longer cycle life. Improving the performance of current lithium-ion batteries in these three areas (voltage, energy density, and cycle life) is very important.

However, it is crucial to improve both the safety aspects of this high voltage system and the performance while using more abundant and low cost materials (Dai *et al.*, 2000). Many research groups have focused on improving the characteristics of the positive electrode, particularly developing high voltage cathode materials. Lithium manganese oxides spinel is an interesting and promising cathode material for rechargeable lithium batteries (Thackeray *et al.*, 1983; Tarascon *et al.*, 1991; Julien *et al.*, 1999). In comparison with layered LiCoO$_2$ and LiNiO$_2$, its three-dimensional structure permits a reversible electrochemical extraction of Li$^+$ ions, at about 4 V versus Li/Li$^+$, to λ-MnO$_2$ without lattice collapse (Thackeray *et al.*, 1984). Additional advantages are the relatively high theoretical capacity (148 mA h/g), low cost with ease preparation and environmental harmlessness (Tarascon *et al.*, 1994).

A problem to overcome for commercial application of this material is its fast capacity fading with charge/discharge cycling. This fact has been related to instability of the active phase caused by several possible factors like a slow dissolution of the cathode material into the electrolyte, high value of the relative volume changes accompanying charge/discharge cycling, Jahn-Teller distortion effect in deeply discharged electrodes (Rodriguez *et al.*, 1998; Gummow *et al.*, 1994). Presently, the capacity of lithium-ion batteries is limited by the capacity of cathode material. Though the commercially employed cathode, LiCoO$_2$ for Li-ion batteries
has a theoretical capacity of 274 mA h/g, the practical attainable capacity is found to be only 120-130 mA h/g in the voltage range 2.7-4.2 V (Fan et al., 1998). The other viable and commercially available cathode material, lithium manganese oxide with the spinel structure LiMn$_2$O$_4$, has a theoretical capacity of 148 mA h/g and its practically attainable value is 100-120 mA h/g (Aurbach et al., 1999). In addition, LiMn$_2$O$_4$ is found to be unstable on cycling and shows severe capacity fading problems during cycling in the long run use. This can be overcome by doping various types of metals such as Cr, Zn, Fe, Al, Ni, Ga, Mg, V, Cu in LiMn$_2$O$_4$. The addition of dopants, may also decrease the initial capacity of the cell.

Amine et al., 1997 found a way to engineer a 5 volt battery to have consistently high capacity for multiple cycles. They prepared LiNi$_{0.5}$Mn$_{0.5}$O$_4$ using sol-gel method and was the first made and tested in mid 1990s. The material has been shown to have a high voltage reaction at 4.7 V. Doping of the transition metals such as Ni, Fe, Co, Cr etc in lithium rich spinels considerably improved the rechargeability on cycling but they delivered significant loss of the initial capacity. An improved operational capacity may be achieved by using LiNiO$_2$ and its derivatives (Fan et al., 1998; Chowdari et al., 2001). The latter materials, however, are not stable on cycling and their cathodic capacity fades drastically, especially when charged and discharged at high current rates. The unsafe operation of these materials is also of concern. Therefore, to realize cost effective Li-ion batteries, the challenge is to identify an alternate cathode material with higher capacity which is cheaper, safe and non-toxic to replace LiCoO$_2$ (Shaju et al., 2002).

The stoichiometry, crystal structure and morphology of the active materials are of essential importance for its electrochemical properties (Gadjov et al., 2004). All these factors are closely related to the method of synthesis. Many procedures for the preparation of cathode materials have been proposed in the literature during last years. The classical ceramic synthesis by a solid-state-reaction between oxides (Guan et al., 1998; Yamada et al., 2000) has been used extensively, but it requires prolonged heat treatment at relatively high temperatures (>700 °C) with repeatedly intermediate grinding. Moreover, this method does not provide good control on the
crystalline growth, compositional homogeneity, morphology and microstructure. As a consequence, the final product consist in relatively large particles (>1 µm) with broad particle size distribution.

In order to overcome these disadvantages, various preparative techniques, known as “soft-chemistry” methods, have been developed. Such techniques are based on the processes of co-precipitation, ion-exchange or thermal decomposition at low temperature of appropriate organic precursors obtained by sol-gel synthesis (Hernan et al., 1997; Kang et al., 2000), Xero-gel (Prabaharan et al., 1995), Pechini (Liu et al., 1996; Liu and Kowal et al., 1996), freeze-drying (Zhecheva et al., 1999), and emulsion-drying (Hwang et al., 1998) methods. This soft chemistry techniques offer many advantages (Thirunakaran et al., 2004) such as better homogeneity, low calcination temperature, shorter heating time, regular morphology, sub-micron sized particles, less impurities, large surface area, and good control of stoichiometry.

In the last 20 years, the lithium-ion battery has become a highly researched topic. The high voltage and energy capacity of the system classify the lithium-ion battery as the most promising energy storage source. However, several improvements must be made before the battery is recognized as a dependable power source for all high voltage applications.
REFERENCES

Ali Eftekhari (2003).“ Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5 v cathode material for lithium batteries”. Journal of Power Sources 124: 182-190

Amine, K., Tukamoto, H., Yasuda, H. and Fujita, Y. (1997). “Preparation and electrochemical investigation of LiMn2−xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries”. J. Power Sources. 68 : 604

Baochen, W., Yongyao, X., Li, F., Dongjiang, Z. (1993). “Studies of spinel LiCr$_x$Mn$_{2-x}$O$_4$ for secondary lithium battery”. Journal of Power Sources. 43-44: 539

Decheng Li, Takahisa Muta, Hideyuki Noguchi (2004). “Electrochemical characteristics of LiNi$_{0.5}$Mn$_{0.5}$Ti$_x$O$_2$ prepared by solid state method”. *J. Power Sources*. 135: 262–266

Gummow, R.J., Thackeray, M.M. (1993). “Characterisation of LT-Li$_{1.2}$Co$_{1.2}$Ni$_{0.2}$O$_2$ electrodes for rechargeable of lithium cells”. J. Electrochem. Soc.140:3365-3368

Han, C.J., Yoon, J. H., Ho Jang, W. C. (2004). “Electrochemical properties of LiNi$_{0.8}$Co$_{0.2}$-x Al ,xO$_2$ prepared by a sol–gel method”. J. of Power Sources. 136:132–138

Iwata, E., Takahashi, K., Maeda, K., Mouri, T. (1999). “Capacity failure on cycling or storage of lithium-ion batteries with Li-Mn-O ternary phases having spinel framework structure and it’s possible solution”. *J. Power Sources.* 81-82: 430

Shaju, K.M., SubbaRao, G.V., Chowdari, B. V. R. (2002). “Lithiated O$_2$ phase, Li$_{2(3)y+1/4}$Co$_{0.15}$Mn$_{0.85}$O$_2$ as cathode for Li-ion batteries”. *Solid State Ionics.* 152-153 : 69-81

Sigala, C., Guyomard, D., Verbaere, A., Piffard, Y., and Tournoux, M. (1995). “Positive electrode materials with high operating voltage for lithium batteries LiCr$_{y}$Mn$_{2-y}$O$_4$ (0 ≤ y ≤ 0)”. *Solid State Ionics.* 81:167

Ting-Kuo Fey, G., Weng, Z.X., Chen, J.G., Prem Kumar, T. (2003). “Electroanalytical studies on sol-gel derived LiNi_{0.8}Co_{0.2}O_2.” *Materials chemistry and Physic.* 82:5-15

Yu, A., Subba Rao, G.V., Chowdari, B.V.R. (2000). “Synthesis and properties of Li_{x}Ga_{x}Mg_{y}Ni_{1-x-y}O_{2} as cathode material for lithium ion batteries”. *Solid State Ionics.* 135 :131–135

Zhang, D., Popov, B.N., White, R.E. (1998). “ Electrochemical investigation of CrO_{2.65} doped LiMn_{2}O_{4} as a cathode material for lithium-ion battery”. *Journal of Power Sources.* 76 : 81-90
