IMPLEMENTATION OF COMPUTER SIMULATION IN RUBBER ASSEMBLY LINE: A CASE STUDY (RUBBER RESEARCH INSTITUTE OF MALAYSIA)

MOHD FAHMI BIN MOHAMAD AMRAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Information Technology – Manufacturing)

Faculty of Computer Science and Information System
Universiti Teknologi Malaysia

JUNE 2006
Abstract

Simulation is one of the modeling techniques in solving industrial problem that can imitate the real system through model development. In Rubber Research Institute of Malaysia (RRIM), assembly line of Deproteinised Natural Rubber (DPNR) that has been operating since 1994 had never been modeled through simulation method in improving and solving the production problem. Therefore, the implementation of computer simulation in the DPNR assembly line at RRIM is appropriate to solve two main problems namely increasing production capacity, and ineffective production line. In order to achieve the objective, facilities layout, automating the process of assembly line and increase the conveyor speeds were proposed as a method to improve the current system. In this project, the simulation modeling was applied discrete event simulation and the flow manufacturing simulation as a methodology. The simulation model was developed and tested using ProModel 6.0 Network Version software. The data analysis was carried out using Stat::Fit of ProModel software. Data was collected and evaluated to determine the necessary parameters that are used in the simulation model. This project is wished to be implemented as solutions to the problem faced by the current system.
Abstrak

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xviii</td>
</tr>
</tbody>
</table>

1 PROJECT OVERVIEW 1
1.1 Introduction 1
1.2 Background of Problem 3
1.3 Statement of the Problem 3
1.4 Project Objectives 4
1.5 Scope of Project 4
1.6 Importance of Project 5
1.7 Chapter Summary 5

2 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 What is Simulation 6
2.2.1 Discrete and Continuous Systems
2.2.2 Continuous Simulation
2.2.3 Combined Discrete-Continuous Simulation
2.2.4 Systems and System Environment
2.2.5 Components of a System
2.2.6 Advantages of Simulation

2.3 Simulation Modeling Tools

2.4 Simulator Tools
2.4.1 *Witness*
2.4.2 *ProModel*
2.4.3 *SIMSMART*
2.4.4 *Arena*

2.5 Assembly Line

2.6 Use of Simulation in Solving Manufacturing Industrial Problems

2.7 Using Discrete Event Simulation in Solving Continuous Processes

2.8 Selecting ProModel as Method and Tools

2.9 Research Study in Rubber Industry

2.10 Research Trend in Simulation
2.10.1 Facilities Planning
2.10.2 Process Automation

2.11 Chapter Summary

3 METHODOLOGY
3.1 Introduction

3.2 Project methodology and flow chart
3.2.1 Problem Formulation
3.2.2 Setting of Objectives and Overall Project Plan

3.2.3 Model Conceptualization
3.2.4 Data Collection
3.2.5 Model Translation
4 INITIAL SYSTEM CHARACTERISTIC

4.1 Introduction

4.2 Organizational Analysis
 4.2.1 Malaysian Rubber Board
 4.2.2 Vision
 4.2.3 Mission
 4.2.4 Objective
 4.2.5 Dry Rubber Products Unit
 4.2.6 Engineering Applications
 4.2.7 Adhesion and Adhesives
 4.2.8 Physics and Chemistry

4.3 Current Manufacturing Process
 4.3.1 Deproteinised Natural Rubber (DPNR)
 4.3.2 DPNR Grades
 4.3.3 DPNR-CV Production Flow Chart
 4.3.4 Potential Areas of Application
 4.3.5 Characteristics of DPNR
 4.3.6 Specifications
 4.3.7 Packaging
 4.3.8 DPNR Layout Design

4.4 User Requirement
 4.4.1 ProModel 6.0 (Network Version)
DATA COLLECTION AND ANALYSIS OF INPUT DATA

5

5.1 Introduction 48
5.2 Data Collection 48
5.3 Data Analysis 49
5.4 Generating Continuous Random Distributions 49
5.5 Distribution Data Testing 50
 5.5.1 Time Processing at Steam Coagulation 50
 5.5.2 Time Processing at Steam Line 51
 5.5.3 Time Processing at Creeper 1 52
 5.5.4 Time Processing at Creeper 2 52
 5.5.5 Time Processing at Creeper 3 53
 5.5.6 Time Processing at Creeper 4 53
 5.5.7 Time Processing at Creeper 5 54
 5.5.8 Time Processing at Piping Line 55
 5.5.9 Time Processing at Soak Machine 55
 5.5.10 Time Processing at Wash 56
 5.5.11 Time Processing at Packing 56
5.6 Chapter Summary 57

6 SIMULATION MODEL DEVELOPMENT 59

6.1 Introduction 59
6.2 Simulation Model 59
 6.2.1 Declaration of the Entity 60
 6.2.2 Location of the Workstations 61
 6.2.3 Generate Path Network and Resources 63
 6.2.4 Arrival Declaration 64
 6.2.5 Processing Programming 64
6.3 Assumption of the Model 66
6.4 Input Specification 66
6.5 Output Specification 67
6.6 Chapter Summary 67

7 VERIFICATION AND VALIDATION 68
7.1 Introduction 68
7.2 Terminating Simulations 68
7.3 Verification 69
7.4 Number of Replication 69
7.5 Validation 72
 7.5.1 Validation of Finish Product 72
 7.5.2 Validation of Left Product 74
7.6 Chapter Summary 75

8 OUTPUT DATA ANALYSIS 76
8.1 Introduction 76
8.2 Simulation Result and Analysis 76
 8.2.1 Analysis of Finish Product 78
 8.2.2 Analysis of Workstations Utilization 78
 8.2.3 Analysis of System Time 79
8.3 Chapter Summary 80

9 ALTERNATIVE MODELS 81
9.1 Introduction 81
9.2 Concept of the Alternative Models 81
 9.2.1 1st Alternative Model 82
 9.2.2 2nd Alternative Model 84
 9.2.3 3rd Alternative Model 86
 Comparison Between the Initial Model and
 Alternative Models 88
 9.3.1 Finish Product 88
 9.3.2 Left Product 90
 9.3.3 System Time 91
 9.3.4 Performance Improvement Significance 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination</td>
<td></td>
</tr>
<tr>
<td>9.4 Chapter Summary</td>
<td>97</td>
</tr>
<tr>
<td>10 DISCUSSION AND CONCLUSIONS</td>
<td>98</td>
</tr>
<tr>
<td>10.1 Conclusions</td>
<td>98</td>
</tr>
<tr>
<td>10.2 Achievements</td>
<td>99</td>
</tr>
<tr>
<td>10.3 Constraints & Challenges</td>
<td>99</td>
</tr>
<tr>
<td>10.4 Aspirations</td>
<td>100</td>
</tr>
<tr>
<td>10.5 Chapter summary</td>
<td>100</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>101</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>106-114</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Four classes of simulation tools</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Areas of applications</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Specification of DPNR CV and DPNR S</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>The standard packaging for DPNR</td>
<td>44</td>
</tr>
<tr>
<td>5.1</td>
<td>Auto Fit Distribution for steam coagulation workstation</td>
<td>51</td>
</tr>
<tr>
<td>5.2</td>
<td>Auto Fit Distribution for steam line</td>
<td>51</td>
</tr>
<tr>
<td>5.3</td>
<td>Auto Fit Distribution for creeper 1 workstation</td>
<td>52</td>
</tr>
<tr>
<td>5.4</td>
<td>Auto Fit Distribution for creeper 2 workstation</td>
<td>52</td>
</tr>
<tr>
<td>5.5</td>
<td>Auto Fit Distribution for creeper 3 workstation</td>
<td>53</td>
</tr>
<tr>
<td>5.6</td>
<td>Auto Fit Distribution for creeper 4 workstation</td>
<td>54</td>
</tr>
<tr>
<td>5.7</td>
<td>Auto Fit Distribution for creeper 5 workstation</td>
<td>54</td>
</tr>
<tr>
<td>5.8</td>
<td>Auto Fit Distribution for piping line</td>
<td>55</td>
</tr>
<tr>
<td>5.9</td>
<td>Auto Fit Distribution for soak machine workstation</td>
<td>55</td>
</tr>
<tr>
<td>5.10</td>
<td>Auto Fit Distribution for wash workstation</td>
<td>56</td>
</tr>
<tr>
<td>5.11</td>
<td>Auto Fit Distribution for packing workstation</td>
<td>57</td>
</tr>
<tr>
<td>5.12</td>
<td>Outline of data collection and analysis of input data</td>
<td>57</td>
</tr>
<tr>
<td>6.1</td>
<td>The length and conveyor speeds for each conveyor</td>
<td>65</td>
</tr>
<tr>
<td>7.1</td>
<td>Finish Product in 26 initial replications</td>
<td>70</td>
</tr>
<tr>
<td>7.2</td>
<td>Inequality test on number of replication, R</td>
<td>71</td>
</tr>
</tbody>
</table>
7.3 Average number of finish product in 26 replications 73
7.4 Average number of left product in 26 replications 75
8.1 Initial model simulation result with 95% confident interval 77
8.2 95% confident interval of workstation utilization 77
9.1 95% confident interval of finish product between 4 models 89
9.2 95% confident interval of left product between 4 models 90
9.3 95% confident interval of system time between 4 models 92
9.4 System improvement significance determination using Bonferroni paired-t confidence interval method for finish product 94
9.5 Individual 95 % confidence intervals for all pairwise comparison $\bar{x}_{(2-1)}$ for finish product 95
9.6 System improvement significance determination using Bonferroni paired-t confidence interval method for system time 96
9.7 Individual 95 % confidence intervals for all pairwise comparison $\bar{x}_{(2-1)}$ for system time 97
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Ways to study a system</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Visualization of Witness</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Visualization of ProModel</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Visualization of Arena</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>ProModel example of a beverage production system</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Integrated facilities design</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Steps in a simulation study</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>DPNR-CV production flow chart</td>
<td>41</td>
</tr>
<tr>
<td>6.1</td>
<td>Rubber Entity</td>
<td>60</td>
</tr>
<tr>
<td>6.2</td>
<td>Entity declaration in ProModel software</td>
<td>61</td>
</tr>
<tr>
<td>6.3</td>
<td>Overall view of the DPNR assembly line</td>
<td>62</td>
</tr>
<tr>
<td>6.4</td>
<td>Declaration procedure of Location in ProModel</td>
<td>62</td>
</tr>
<tr>
<td>6.5</td>
<td>Path Network declaration in ProModel software</td>
<td>63</td>
</tr>
<tr>
<td>6.6</td>
<td>Resources declaration in ProModel software</td>
<td>63</td>
</tr>
<tr>
<td>6.7</td>
<td>Operator at soak machine workstation</td>
<td>64</td>
</tr>
<tr>
<td>6.8</td>
<td>Arrival declaration of simulation model</td>
<td>64</td>
</tr>
<tr>
<td>8.1</td>
<td>Differences between finish product and cumulative average finish product</td>
<td>78</td>
</tr>
<tr>
<td>8.2</td>
<td>The percentage of workstations utilization</td>
<td>79</td>
</tr>
<tr>
<td>8.3</td>
<td>Differences between system time and cumulative average system time</td>
<td>80</td>
</tr>
</tbody>
</table>
9.1 Overall view of the 1st alternative model DPNR assembly line 83
9.2 Trolley transfers the rubber from soak machine workstation to wash workstation. 83
9.3 Overall view of the 2nd alternative model DPNR assembly line 85
9.4 Parallel line from piping line workstation to wash workstation 86
9.5 Overall view of the 3rd alternative model DPNR assembly line 87
9.6 Comparison of average number of finish product in each model 88
9.7 Comparison of average number of left product in each model 90
9.8 Comparison of average seconds system time in each model 91
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Project 1 Gantt Chart</td>
<td>106</td>
</tr>
<tr>
<td>B</td>
<td>Project 2 Gantt Chart</td>
<td>107</td>
</tr>
<tr>
<td>C</td>
<td>DPR Layout Design</td>
<td>108</td>
</tr>
<tr>
<td>D</td>
<td>Data Collection for Each Workstation</td>
<td>109</td>
</tr>
<tr>
<td>E</td>
<td>Goodness of Fit Test Result for the Workstations Processing Time</td>
<td>110</td>
</tr>
<tr>
<td>F</td>
<td>Workstations Utilization in 26 Runs</td>
<td>113</td>
</tr>
<tr>
<td>G</td>
<td>DPR & Product & Sample Product</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Celcius</td>
</tr>
<tr>
<td>DPNR</td>
<td>Deproteinised Natural Rubber</td>
</tr>
<tr>
<td>GOF</td>
<td>Goodness of Fit</td>
</tr>
<tr>
<td>HNS</td>
<td>Hydroxylamine Neutral Sulphate</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>KS</td>
<td>Kolmogrov-Smirnov</td>
</tr>
<tr>
<td>mpm</td>
<td>meter per minute</td>
</tr>
<tr>
<td>MRB</td>
<td>Malaysian Rubber Board</td>
</tr>
<tr>
<td>NR</td>
<td>natural rubber</td>
</tr>
<tr>
<td>R & D</td>
<td>research and development</td>
</tr>
<tr>
<td>UM</td>
<td>Universiti Teknologi Malaysia</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Simulation is one of the most powerful analysis tools available to those responsible for the design and operation of complex processes or systems. It is heavily based upon computer science, mathematics, probability theory and statistics. The use of simulation as a problem solving tool continues to expand.

Deproteinised Natural Rubber (DPNR) is a purified form of natural rubber (NR) in which most of the ash and protein components have been removed. It is specially rubber intended for use in special engineering applications. It contains about 96% rubber hydrocarbons compared to about 93% for normal natural rubber grades. The removal of these non-rubber components confers special attributes to the rubber which enhance its value in certain specialized applications.

Deproteinisation Natural Rubber (DPNR), whether in dry rubber or latex form, or products generates a lot of interests in the past and at present. The numerous publications available attest to the great interest in this topic.

Some consumers of dry natural rubber are interested too because of the special attributes that come along with the deproteinisation of natural rubber. Many attempts have been made in the past to produce commercial quantities of Deproteinisation Natural Rubber (DPNR) at a reasonable price and quality to meet the needs of such consumers.
The Malaysian Rubber Board (MRB) has been successful in this respect and has developed a new and improved method for its production. The DPNR thus produced is actually a purified form of natural rubber with very low nitrogen and ash contents. When compounded using the soluble efficient vulcanization system, DPNR has low creep and stress relaxation, low water absorption, low compression set and a more consistent modulus when subjected to conditions of variable humidity. DPNR is therefore suitable for a niche market where the requirements for such properties are very stringent.

One application for DPNR is in the manufacture of hydromounts for the automobile industry. The main advantages of hydromounts are that the automobile engine is so gently supported that there is negligible vibration transfer to the main body compartment even when the road surface is poor.

Another application is in large shock absorbers for Deltawerken in the Netherlands. These large shock absorbers have to withstand prolonged contact with seawater and yet must not absorb too much seawater to cause corrosion in the embedded steel plates. In addition, the creep of the rubber should be minimal because of the very long expected service life. For both these reasons, DPNR is preferred over normal NP in this application.

The MRB has taken serious note of the requirements of the industry for DPNR and has purposely built a special plant solely for its production. The plant has been in operation for 9 years already and has supplied commercial quantities to various customers as well as for promotional purposes.

This project presents a study on simulation of assembly line at Rubber Research Institute of Malaysia in Sungai Buloh, Selangor. Generally this study analyses the data and of rubber assembly line and try to simulate it to make the alternative model that would give benefits to manufacturer. Simulation was applied to rubber assembly line to investigate system parameters and to test various hypotheses.
1.2 Background of Problem

As the twenty first century begins, the global marketplace continues to grow stronger. To stay competitiveness, factories need to make long as well as short term capacity decision with proper planning. This project is about simulation study in rubber assembly line. The preliminary study at the factory revealed that they have a problem in the current system of assembly line.

The implementation of assembly line in manufacturing system can optimize and increases the productivity. In this study, the current assembly line could not manufacture and distribute the DPNR as schedule by the factory. Furthermore, the demand from customers is increasing and the factory has to increase their monthly production rate. The manufacturing lead time is one of the problems that industry expertise has to accomplish.

The material handling system that factory applied now is not fully optimized. They still use a man power to organize and transfer the raw material and product from one workstation to another workstation. This could cause a problem to operators who are highly exposed to chemical effects. Raw materials are mix with chemical content during early stage of manufacturing the DPNR.

1.3 Statement of the Problem

Below are some statements of the problem:

i. How to improve the production capacity and assembly line productivity using based simulation model?

ii. How to developed valid simulation model that suits with the scenario?

iii. How the performance of assembly line managed with the current system?
1.4 Project Objectives

Below are some objectives of the project:

i. To design and develop a simulation model of assembly line based on real system using ProModel software.

ii. To propose what are the possible manufacturing improvement design which is able to significantly increase the manufacturing performances and production capacity using valid simulation model.

1.5 Scope of Project

Below are some scopes of the project:

i. This project focuses on Deproteinised Natural Rubber (DPNR) assembly line in Rubber Research Institute of Malaysia.

ii. The project cover operation process from steam coagulation workstation to wash workstation of manufacture the DPNR which is consists of 9 workstations.

iii. Collect and analyze the input and output data in order to develop the simulation assembly line.

iv. To develop a simulation model using ProModel 6.0, Network Version meanwhile Stat::Fit and Microsoft Excel software were used for statistical analysis.

v. This project recommendation only based on manufacturing variable aspect and assume that the real system have no constraint about anything outside the analytical manufacturing aspect (e.g financial limitation, land, workforce and technology).
1.6 Importance of Project

From this project it can helps Rubber Research Institute of Malaysia as a manufacturer and manufacturing industry in Malaysia. Rubber Research Institute of Malaysia can increase their production rate and improve the efficiency of the line production. Beside that, the total time and manufacturing lead time can even faster by simulate the current system. When the system have been automated, numbers of workers can reduced to cut the production costs and also to avoid accident that can occur during manufacturing process.

Manufacturing industry in Malaysia can get a benefit with this project indirectly. Because not many company or researchers in Malaysia involve in the rubber industry, this project can give a knowledge and information with the simulation of the rubber.

Hopefully with the efforts in doing this project it can helps other researchers in guiding and solving the problems related with rubber industry in Malaysia especially in modeling and simulation of assembly line.

1.7 Chapter Summary

In this introductory chapter, the outline of the whole project have been presented and tried to bring to the fore why this project is necessary at this time. The prevailing problems that necessitate the study have been discussed and the project problems highlighted. The objective, scope and the importance of this project have also been pointed out.
REFERENCES

