THE PERFORMANCE OF MEMBRANE BIOREACTOR IN TREATING HIGH TEMPERATURE MUNICIPAL WASTEWATER

ABDULLAH ALI AL AMRI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MARCH 2010
To my first teacher, who taught me how to read and how to write. The person who dreamed to see me one day high educated. He left the life but his dream still alive. To my uncle Mubarak Salim Baawidhan, I dedicate this humble work.

Abdullah Ali Al Amri
30 March 2010
ACKNOWLEDGEMENT

The most important acknowledge is to our Lord Most Merciful Most Wise by whose mercy I was able to begin this research. His Mercy is such that unworthy slave like me is given the ability to work in His cause through which I remember Him Swt and be grateful towards all He has given me. Allah states in the Quran 'Then remember Me; I will remember you. Be grateful to Me, and do not reject Me' (al-Baqarah 2: 152) May Allah accept my humble work as an effort to remember and thank Him Swt. Ameen

I would like to express my deep and sincere gratitude to my supervisor, Prof. Dr. Mohd. Razman Salim, Head of the Department of Environmental Engineering, Faculty of Civil Engineering, University Teknologi Malaysia. His wide knowledge and his logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I am deeply grateful to my supervisor, Dr. Azmi Aris, Assistant Professor, Department of Environmental Engineering, Faculty of Civil Engineering, University Teknologi Malaysia, for his detailed and constructive comments, and for his important support throughout this work. His valuable advice, friendly help and extensive discussions around my work have been very significant for this study.

I wish to express my warm and sincere thanks to Associate Prof. Dr Norhan Abd. Rahman, Department of Hydraulics & Hydrology, Faculty of Civil Engineering, Universiti Teknologi Malaysia, for his valuable comments and sincere advices whenever I encountered the consecutive challenges of PhD.

I would like also to express my appreciations to my colleagues in IPASA laboratory, PhD student Zul. Ahmed, Dr Aznah and Dr Khalidah, and to the laboratory staff at Environmental Laboratory, Faculty of Civil Engineering, University Teknologi Malaysia: Mr Suhaimi, K. Roz, Mr. Muz, Mr Usop and Mr Ramli; at Biology department: Kak Fatimah, for their endless help and full support.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work in University Teknology Malaysia, in Indah Water Company, in Sultan Qaboos University, in Oman Wastewater Company and in Salalah Sanitary Drainage Company.
I owe my loving thanks to my father, my mother and my wife, who have lost a lot due to my research abroad. Without their prayers, encouragement and understanding it would have been difficult for me to finish this work. My special gratitude is due to his Excellency Eng Ahmed my eldest brother, my sister Layla and their families for their continuous support. My loving thanks are due to all those who have been putting up their hands to Allah, asking Him Swt His blessing, help and guidance for me.

Abdullah Ali Al Amri
30 March 2010, UTM
ABSTRACT

Membrane bioreactor (MBR) is a promising technology which has been applied to treat a wide range of municipal wastewater in different regions around the world. However, it has not yet been employed in arid and semi-arid areas such as the Arabic Gulf Cooperation Council States (AGCCS). The application of MBR process in treating high temperature municipal wastewater (HTMW) has not been documented and could pose as an obstacle. Therefore, the aim of this study was to investigate the effect of high temperature on MBR process in treating municipal wastewater. The objectives were to study the biomass properties, the membrane fouling tendency and the biological and final removal efficiencies (Bio and Fin R E) of COD, NH$_3$-N and turbidity. In this study, a 3.6 L lab-scale aerobic MBR was seeded with 1.5 L activated sludge inoculum from Oman and was fed with a real municipal wastewater from Taman Pulai Utama sewage treatment plant in Johor. The system was then run under four main experimental stages. For the first three stages, it was run at three various temperatures (25, 35 and 45°C) and two different fluxes (10 and 15 LMH). In the fourth stage, it was run at drastic temperature changes with constant flux (10 LMH). The study demonstrated that the increase in temperature caused biomass shock. This resulted in the biomass reduction, lowered sludge settling properties and higher supernatant’s turbidity. Due to biomass reduction (low richness and diversity), DO and ML pH increased. The temperature increase led to increase in SMP carbohydrate and protein, and decrease in EPS protein. Biomass reduction, high pH, SMP concentration increase and EPS decrease were the factors that caused relatively high membrane fouling. TMP and BWP ascended critically with temperature and flux increase. The highest TMP values scored were 348 mbar at 10 LMH flux and 429 mbar at 15 LMH flux, and both of them were at 45°C. Membrane openings widen with temperature increase, thus membrane fouling tended to be internal rather than external at higher temperatures. As a result of biomass shock the removal efficiencies dropped temporarily and then improved gradually with the acclimatization despite the flux increase. COD Bio R E was 90%, 84% and 62%, while Fin R E was 95%, 91% and 79% at 25°C, 35°C and 45°C respectively. Both NH$_3$-N removal efficiencies were very high up to 100% at 25 and 35°C, while at 45°C they were 52% Bio R E and 56% Fin R E as high nitrification has not yet been achieved at high temperatures. Despite the higher biomass shock at drastic temperature changes stage, COD and turbidity Fin R E were very high up to 90% and 100% respectively, while NH$_3$-N Fin R E was nearly 50%. The viscosity decreased with the increased in temperature and SVI. In spite of the critical operating conditions, the use of hollow fiber membrane module was able to achieve comparatively good removal efficiencies, however at the highest temperature i.e (45°C) the membrane fouling was the highest.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITEL</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statement 3

1.3 Aim and Objectives 6

1.4 Scope of the Study 7

1.5 Research Significance 9

1.6 Organization of the Thesis 10
LITERATURE REVIEW

2.1 Introduction

2.2 Conventional Activated Sludge System

2.2.1 Activated Sludge Process: Characteristics

2.2.2 Aerobic Biological Oxidation

2.2.3 Nitrification and Denitrification Processes

2.2.4 Phosphorus Removal

2.2.5 Effluent and Biomass Separation

2.3 Design, Operation and Maintenance of Activated Sludge System: Different Issues

2.3.1 Sludge Bulking

2.3.2 Sludge Foaming

2.3.3 Sludge Rising

2.3.4 Production of Surplus Sludge

2.3.5 Processing Time

2.3.6 Large Footprint and Other Issues

2.4 Compact Systems for Wastewater Treatment

2.4.1 Sequencing Batch Reactor

2.4.2 Particle-based Biofilm (Biogranulation) Reactor

2.4.3 Membrane Bioreactor

2.5 Membrane Bioreactor Technology and Process

2.5.1 Membrane Definition and Technology

2.5.2 Types of Membrane Modules

2.5.3 Membrane Bioreactor (MBR): Definition and Properties

2.5.3.1 MBR Definition

2.5.3.2 MBR Properties and Advantages

2.5.4 MBR Units

2.5.5 MBR Types

2.5.5.1 Internal and External MBRs
2.5.5.2 Aerobic and Anaerobic MBRs 37

2.6 MBR Performance and Operating Factors 39

2.6.1 Sludge Production 39

2.6.2 Removal Efficiency 39

2.6.2.1 Chemical Oxygen Demand (COD) 39

2.6.2.2 Nitrogen Removal 41

2.6.2.3 Turbidity 43

2.7 Membrane Fouling in MBR 45

2.7.1 Definition 46

2.7.2 Membrane Fouling 46

2.7.3 Fouling Characteristics and Mechanisms 48

2.7.3.1 Biofouling 48

2.7.3.2 Particle and Colloidal Fouling 52

2.7.3.3 Crystalline Fouling (Scaling) 55

2.7.4 Factors Affecting MBR Fouling 55

2.7.4.1 Membrane Properties 56

2.7.4.2 Mixed Liquor Characteristics 58

2.7.4.3 Design and Operating Conditions 66

2.7.5 Factors of Membrane Fouling in MBR 71

2.7.6 Membrane Fouling Estimation (Measurement) 72

2.7.7 Limitation and Cleaning Procedures 72

2.7.7.1 Fouling Limitation 72

2.7.7.2 Cleaning Procedures 73

2.8 High Temperature Treatment (Thermophilic Treatment) 74

2.9 Summary of Recent Studies on MBR Applications 75

3 RESEARCH METHODOLOGY 79

3.1 Study Perspective 79
3.2 Study Outline 80
3.3 Bioreactor Configuration 84
 3.3.1 Main Reactor 84
 3.3.2 Aeration System 86
 3.3.3 Heating System (Instrument) 87
 3.3.4 Membrane Modules and Specification 87
 3.3.5 Suction/Backwash Set 89
3.4 Bioreactor Inoculum 90
3.5 Influent Wastewater 92
3.6 Membrane Cleaning Chemicals and Procedures 95
3.7 Operating Conditions 96
 3.7.1 Start-up Stage 96
 3.7.2 Main Stages 96
3.8 Operational Parameters 98
 3.8.1 pH Control 98
 3.8.2 Dissolved Oxygen (DO) 99
 3.8.3 Temperature (T) 99
 3.8.4 Transmembrane Pressure (TMP) and Backwash Pressure (BWP) 99
3.9 Sampling and Data Collection 99
3.10 Main Operating Equations 100
3.11 Analytical Methods 101
 3.11.1 TSS, VSS, MLSS and MLVSS 101
 3.11.2 Chemical Oxygen Demand (COD) 102
 3.11.3 Ammonia Nitrogen (NH₃-N) 102
 3.11.4 Turbidity 102
 3.11.5 Dynamic Viscosity 103
 3.11.6 Measurements of SMP and EPS Contents in the Mixed Liquor 103
3.12 Data Analysis 103
4 RESULTS AND DISCUSSION

4.1 Introduction 105

4.2 Start-up 105
 4.2.1 Membrane Module Configurations 106
 4.2.1.1 Module Configuration 1 107
 4.2.1.2 Module Configuration 2 108
 4.2.1.3 Module Configuration 3 108
 4.2.1.4 Module Configuration 4 109
 4.2.2 Determination of Critical Flux 111
 4.2.3 Biomass Growth 115

4.3 Performance of MBR At 25 °C, 35 °C and 45 °C (First Three Experimental Stages) 117
 4.3.1 Temperature Fluctuating 117
 4.3.2 Biomass Growth 118
 4.3.3 The Effect of Temperature on Dissolved Oxygen and pH 123
 4.3.4 Mixed Liquor Viscosity 128
 4.3.5 Sludge Volume Index (SVI) 129
 4.3.6 Extracellular Polymeric Substances (EPS) and Soluble Microbial Products (SMP) 131

4.4 Membrane Fouling 135
 4.4.1 Transmembrane Pressure 135
 4.4.2 Backwash Pressure 137
 4.4.3 Membrane Fouling Rate 138
 4.4.4 Discussion of Membrane Fouling 140

4.5 Removal Efficiency 147
 4.5.1 COD Removal Efficiency 147
 4.5.2 NH₃-N Removal Efficiency 150
 4.5.3 Turbidity Removal Efficiency and Effluent Colour 154
4.6 Statistical Analysis 157
 4.6.1 Analysis of Variance (ANOVA) 157
 4.6.2 Correlation Analysis 161
4.7 Performance of MBR At Drastic Temperature Changes (Fourth Experimental Stage) 164
 4.7.1 Drastic Temperature Changes 165
 4.7.2 Activated Sludge Characteristics 166
 4.7.2.1 Biomass Growth 166
 4.7.2.2 Dissolved Oxygen (DO) and pH 167
 4.7.2.3 Mixed Liquor Viscosity and Sludge Volume Index (SVI) 168
 4.7.2.4 Extracellular Polymeric Substances (EPS) and Soluble Microbial Products (SMP) 170
 4.7.3 Membrane Fouling 171
 4.7.4 Removal Efficiency 173
 4.7.4.1 COD Removal Efficiency 173
 4.7.4.2 NH₃-N Removal Efficiency 174
 4.7.4.3 Turbidity and Effluent Colour 175
4.8 Summary 176

5 CONCLUSIONS AND RECOMMENDATIONS 178
 5.1 Conclusions 178
 5.1.1 Start up Stage 178
 5.1.2 25 °C, 35 °C and 45 °C Stages 179
 5.1.3 Drastic Temperature Changes Stage 181
 5.2 Recommendations 183
REFERENCES

Appendices A1-C 214 - 244
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Description and causes of activated sludge foams (Richard, 2003)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of sludge treatment, advantages and some potential limitations (Badreddine, 2008; Aznah, 2008)</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Membrane classification according to the pore size and retention capability (Zenon, 2007)</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of recent studies related to MBR process applications</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>Membrane specifications</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Characteristics of influent wastewater (actual wastewater mixed with synthetic wastewater) used in this study and characteristics of influent wastewater to Al Ansab treatment plant</td>
<td>94</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical components of synthetic wastewater (Medium A & B and Trace elements)</td>
<td>95</td>
</tr>
<tr>
<td>3.4</td>
<td>The operational constant parameters</td>
<td>98</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters used for selection process of membrane module configurations</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Advantages and disadvantages of membrane module configurations</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Values of Φ_{TMP}, $\Phi_{\text{TMP(CW)}}$, Φ_{FR}, and Φ_{K} with variable of flux</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Minimum, maximum and average values of temperatures variations</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Average values of VLR, F/M and MLVSS/MLSS</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Relationship between p-value and confidence level (Aris, 2004).</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>The significance level of the effect of mixed liquor temperature, membrane hydraulic flux and their interaction on the responses</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The temperatures map in AGCCS and Middle East</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic figure of typical activated sludge process</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Anaerobic and aerobic metabolisms of PAOs (Blackall et. al., 2002)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical sequencing batch reactor operation for one cycle (Wang et. al., 2006)</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Types of particle-based biofilm reactors: (a) biofilm airlift suspension, (b) expanded granular sludge blanket and (c) internal circulation reactors (Nicolella et al., 2000)</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical membrane bioreactor system (Ujang and Anderson, 2000)</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic shape for membrane filtration process</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Hollow fibre membrane. a) fibre magnified several hundred times, b) a cross section of a membrane (Zenon, 2007)</td>
<td>30</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.8</td>
<td>Simplified schematics of MBR configurations. a) internal MBR configuration and b) external MBR configuration (Paul et al., 2006)</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Three main mechanisms for membrane fouling</td>
<td>47</td>
</tr>
<tr>
<td>2.10</td>
<td>Heating method for EPS and SMP extraction and measurement (Le-Clech et al., 2006)</td>
<td>61</td>
</tr>
<tr>
<td>2.11</td>
<td>Simplified representation of EPS, eEPS and SMP (Le-Clech et al., 2006)</td>
<td>61</td>
</tr>
<tr>
<td>2.12</td>
<td>Different circumstances of critical flux in microfiltration</td>
<td>67</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic representation of a weak form and a strong form critical flux (PWF: pure water flux) (Metsamuuronen et al., 2002)</td>
<td>68</td>
</tr>
<tr>
<td>2.14</td>
<td>Schematic representation of the critical flux determination by the flux step method (Le Clech et al., 2003)</td>
<td>69</td>
</tr>
<tr>
<td>2.15</td>
<td>The absolute increase in TMP between the two points is plotted as a function of the increasing flux. The total transmembrane pressure is also shown (0.15% BSA, pH 9.7, Re 248) (Wu et al., 1999)</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Major studies undertaken on membrane bioreactor performance and applications</td>
<td>82</td>
</tr>
<tr>
<td>3.2</td>
<td>Out-line of the study</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic drawing of MBR system used in this study</td>
<td>85</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.4</td>
<td>Picture of the MBR system used in this study</td>
<td>86</td>
</tr>
<tr>
<td>3.5</td>
<td>Samples of different configurations of membrane modules</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Location of Al Ansab conventional activated sludge plant in Muscat</td>
<td>91</td>
</tr>
<tr>
<td>3.7</td>
<td>Location of Pulai Utama conventional activated sludge plant in Johor</td>
<td>93</td>
</tr>
<tr>
<td>3.8</td>
<td>The operational framework of the main experimental stages and phases</td>
<td>97</td>
</tr>
<tr>
<td>4.1</td>
<td>Membrane module configuration 1</td>
<td>107</td>
</tr>
<tr>
<td>4.2</td>
<td>Membrane module configuration 2</td>
<td>108</td>
</tr>
<tr>
<td>4.3</td>
<td>Membrane module configuration 3</td>
<td>109</td>
</tr>
<tr>
<td>4.4</td>
<td>Membrane module configuration 4</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Critical flux determination</td>
<td>112</td>
</tr>
<tr>
<td>4.6</td>
<td>Relationship between TMP and Flux</td>
<td>114</td>
</tr>
<tr>
<td>4.7</td>
<td>Permeability and fouling rate as function of flux</td>
<td>115</td>
</tr>
<tr>
<td>4.8</td>
<td>Biomass growth during the start-up stage</td>
<td>116</td>
</tr>
<tr>
<td>4.9</td>
<td>Temperatures variations during the first three stages (25°C, 35°C and 45°C)</td>
<td>118</td>
</tr>
<tr>
<td>4.10 a</td>
<td>Biomass growth (MLSS) at different temperatures and flux of 10 LMH</td>
<td>121</td>
</tr>
<tr>
<td>4.10 b</td>
<td>Biomass growth (MLSS) at different temperatures and flux of 15 LMH</td>
<td>121</td>
</tr>
</tbody>
</table>
4.10 c Biomass growth (MLVSS) at different temperatures and flux of 10 LMH 122
4.10 d Biomass growth (MLVSS) at different temperatures and flux of 15 LMH 122
4.11 a The relationship between DO and pH at 25 °C and flux of 10 LMH 124
4.11 b The relationship between DO and pH at 25 °C and flux of 15 LMH 125
4.12 a The relationship between DO and pH at 35 °C and flux of 10 LMH 125
4.12 b The relationship between DO and pH at 35 °C and flux of 15 LMH 126
4.13 a The relationship between DO and pH at 45 °C and flux 10 LMH 126
4.13 b The relationship between DO and pH at 45 °C and flux 15 LMH 127
4.14 a Variation of biomass viscosities at different temperatures and flux of 10 LMH 128
4.14 b Variation of biomass viscosities at different temperatures and flux of 15 LMH 129
4.15 a Sludge volume index (SVI) variations at different temperatures and flux of 10 LMH 130
4.15 b Sludge volume index (SVI) variations at different temperatures and flux of 15 LMH 130
4.16 Means of SMP and EPS values at different temperatures 132
4.17 a EPS and SMP values (carbohydrates and proteins) at 25 °C stage 133
4.17 b EPS and SMP values (carbohydrates and proteins) at 35 °C stage 134
4.17 c EPS and SMP values (carbohydrates and proteins) at 45 °C stage 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.18 a</td>
<td>TMP increase at different temperatures and flux of 10 LMH</td>
<td>136</td>
</tr>
<tr>
<td>4.18 b</td>
<td>TMP increase at different temperatures and flux of 15 LMH</td>
<td>136</td>
</tr>
<tr>
<td>4.19 a</td>
<td>BWP increase at different temperatures and flux of 10 LMH</td>
<td>137</td>
</tr>
<tr>
<td>4.19 b</td>
<td>BWP increase at different temperatures and flux of 15 LMH</td>
<td>138</td>
</tr>
<tr>
<td>4.20 a</td>
<td>Membrane fouling rate at different temperatures and flux of 10 LMH</td>
<td>139</td>
</tr>
<tr>
<td>4.20 b</td>
<td>Membrane fouling rate at different temperatures and flux of 15 LMH</td>
<td>139</td>
</tr>
<tr>
<td>4.21</td>
<td>Fault membrane after using in the third stage of 45 °C</td>
<td>144</td>
</tr>
<tr>
<td>4.22</td>
<td>Membrane fouling roadmap</td>
<td>146</td>
</tr>
<tr>
<td>4.23 a</td>
<td>COD Biological removal efficiency at different temperatures and flux of 10 LMH</td>
<td>148</td>
</tr>
<tr>
<td>4.23 b</td>
<td>COD Biological removal efficiency at different temperatures and flux of 15 LMH</td>
<td>149</td>
</tr>
<tr>
<td>4.24 a</td>
<td>COD Final removal efficiency at different temperatures and flux of 10 LMH</td>
<td>149</td>
</tr>
<tr>
<td>4.24 b</td>
<td>COD Final removal efficiency at different temperatures and flux of 15 LMH</td>
<td>150</td>
</tr>
<tr>
<td>4.25 a</td>
<td>NH₃-N Biological removal efficiency at different temperatures and flux of 10 LMH</td>
<td>152</td>
</tr>
<tr>
<td>4.25 b</td>
<td>NH₃-N Biological removal efficiency at different temperatures and flux of 15 LMH</td>
<td>152</td>
</tr>
<tr>
<td>4.26 a</td>
<td>NH₃-N Final removal efficiency at different temperatures and flux of 10 LMH</td>
<td>153</td>
</tr>
<tr>
<td>4.26 b</td>
<td>NH₃-N Final removal efficiency at different temperatures and flux of 15 LMH</td>
<td>153</td>
</tr>
</tbody>
</table>
4.27 a Turbidity removal efficiency at different temperatures and flux of 10 LMH

4.27 b Turbidity removal efficiency at different temperatures and flux of 15 LMH

4.28 a Treated water (effluent) colour at 25 °C stage

4.28 b Treated water (effluent) colour at 45 °C stage

4.29 The relationship between the temperature and MLSS

4.30 The relationship between the temperature and TMP

4.31 The relationship between the temperature and COD Bio RE

4.32 The relationship between the temperature and COD Fin RE

4.33 The relationship between the temperature and SMPc

4.34 The relationship between the temperature and SMPp

4.35 The relationship between the temperature and EPSp

4.36 Drastic temperature changes during the forth stage

4.37 Biomass growth as MLSS and MLVSS at drastic temperature changes stage

4.38 The relationship between DO and pH at drastic temperature changes stage

4.39 Mixed liquor viscosity and SVI at drastic temperature changes stage

4.40 SMP and EPS values (carbohydrates and proteins) at drastic temperature changes stage
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.41</td>
<td>TMP, BWP and Fouling Rate values at drastic temperature changes stage</td>
<td>172</td>
</tr>
<tr>
<td>4.42</td>
<td>COD removal efficiencies at drastic temperature changes stage</td>
<td>174</td>
</tr>
<tr>
<td>4.43</td>
<td>NH$_3$-N removal efficiencies at drastic temperature changes stage</td>
<td>175</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_K</td>
<td>Gradient of Permeability</td>
</tr>
<tr>
<td>$\Phi_{\text{TMP(CW)}}$</td>
<td>TMP Gradient of Clean Water</td>
</tr>
<tr>
<td>Φ_{TMP}</td>
<td>Gradient of Wastewater</td>
</tr>
<tr>
<td>Φ_{FR}</td>
<td>Gradient of Fouling Rate</td>
</tr>
<tr>
<td>ΔP</td>
<td>TMP</td>
</tr>
<tr>
<td>°C</td>
<td>Centi Degrees</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity</td>
</tr>
<tr>
<td>Cb</td>
<td>Bulk MLSS Concentration</td>
</tr>
<tr>
<td>F/M</td>
<td>Food to Microorganisms Ratio</td>
</tr>
<tr>
<td>J</td>
<td>Oppositely Directed Membrane Permeation Velocity</td>
</tr>
<tr>
<td>J</td>
<td>Hydraulic Flux</td>
</tr>
<tr>
<td>J_c</td>
<td>Critical Flux</td>
</tr>
<tr>
<td>K_{CW}</td>
<td>Permeability of Clean Water</td>
</tr>
<tr>
<td>K_{Sludge}</td>
<td>Permeability of Sludge</td>
</tr>
<tr>
<td>n</td>
<td>Compressibility Factor</td>
</tr>
<tr>
<td>N_2</td>
<td>Nitrogen</td>
</tr>
</tbody>
</table>
N\textsubscript{2}O - Nitrogen Oxide
NH\textsubscript{3} N - Ammonia Nitrogen
NH\textsubscript{3} N - Ammonia Nitrogen
P - Phosphorus
PO\textsubscript{4}3- - Orthophosphate
Q\textit{o} - Flow Rate of Feed
Q\textit{w} - Waste Activated Sludge Flowrate
R\textsubscript{m} - Membrane Resistance
R\textit{t} - Total Membrane Resistance
S\textsubscript{o} - Influent COD
t - Temperature
TMP\textsubscript{CW} - TMP of Clean Water
TMP\textit{f} - TMP Values Obtained at the Final Flux Steps
TMP\textit{i} - TMP Values Obtained at the Initial Flux Steps
TMP\textsubscript{sludge} - TMP of Sludge
US\$ - United States dollar
V - Volume of Aeration Tank
VL - Velocity
X - Mixed Liquor Suspended Solids
X\textit{e} - Effluent Suspended Solids
\alpha - Specific Cake Resistance
\alpha\textsubscript{c} - Cake Resistance
\theta - HRT
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>μm</td>
<td>-</td>
<td>Micrometer</td>
</tr>
<tr>
<td>v</td>
<td>-</td>
<td>Permeate Volume Per Unit Area</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCCS</td>
<td>Arabic Gulf Cooperation Council States</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>AS</td>
<td>Activated Sludge</td>
</tr>
<tr>
<td>BAS</td>
<td>Biofilm Airlift Suspension</td>
</tr>
<tr>
<td>BFB</td>
<td>Biofilm Fluidized Bed</td>
</tr>
<tr>
<td>Bio R E</td>
<td>Biological Removal Efficiency</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>BWP</td>
<td>Backwash Pressure</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>DDG</td>
<td>Omani Meteorological</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>DOTM</td>
<td>Direct Observation Through Membrane</td>
</tr>
<tr>
<td>EBPR</td>
<td>Enhanced Biological Phosphorus Removal</td>
</tr>
<tr>
<td>eEPS</td>
<td>Extracted EPS</td>
</tr>
<tr>
<td>eEPSc</td>
<td>Extracted EPS Carbohydrate</td>
</tr>
<tr>
<td>eEPSp</td>
<td>Extracted EPS Protein</td>
</tr>
<tr>
<td>Ef</td>
<td>Effluent</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>EGSB</td>
<td>Expanded Granular Sludge Blanket</td>
</tr>
<tr>
<td>EPS</td>
<td>Extracellular Polymeric Substances</td>
</tr>
<tr>
<td>ESEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>Fin R E</td>
<td>Final Removal Efficiency</td>
</tr>
<tr>
<td>GAOs</td>
<td>Glycogen Accumulating Organisms</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>HTMW</td>
<td>High Temperature Municipal Wastewater</td>
</tr>
<tr>
<td>IC</td>
<td>Internal Circulation</td>
</tr>
<tr>
<td>In</td>
<td>Influent</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>MBR</td>
<td>Membrane Bioreactor</td>
</tr>
<tr>
<td>MF</td>
<td>Microfiltration</td>
</tr>
<tr>
<td>ML</td>
<td>Mixed Liquor</td>
</tr>
<tr>
<td>ML COD</td>
<td>Filterd Supernatant COD</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquor Suspended Solids</td>
</tr>
<tr>
<td>MLVSS</td>
<td>Mixed Liquor Volatile Suspended Solids</td>
</tr>
<tr>
<td>MRU</td>
<td>Membrane Research Unit</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>NTU</td>
<td>Turbidity Unit</td>
</tr>
<tr>
<td>PAOs</td>
<td>Phosphate Accumulating Organisms</td>
</tr>
<tr>
<td>PES</td>
<td>Polyethersulfone</td>
</tr>
<tr>
<td>PHA</td>
<td>Poly-β-hydroxyalkanoates</td>
</tr>
<tr>
<td>PHA</td>
<td>Polyhydroxyalkanoates</td>
</tr>
<tr>
<td>PHB</td>
<td>Polyb hydroxybutyrate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RAS</td>
<td>Return’s Activated Sludge</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>SBR</td>
<td>Sequencing Batch Reactor</td>
</tr>
<tr>
<td>S\text{COD}</td>
<td>Soluble Chemical Oxygen Demand</td>
</tr>
<tr>
<td>S\text{COD}</td>
<td>Soluble COD</td>
</tr>
<tr>
<td>SMP</td>
<td>Soluble Microbial Products</td>
</tr>
<tr>
<td>SMPc</td>
<td>SMP Carbohydrate</td>
</tr>
<tr>
<td>SMPp</td>
<td>SMP Protein</td>
</tr>
<tr>
<td>SND</td>
<td>Simultaneous Nitrification and Denitrification</td>
</tr>
<tr>
<td>SRT</td>
<td>Sludge Retention Time</td>
</tr>
<tr>
<td>SS</td>
<td>Suspended Solids</td>
</tr>
<tr>
<td>SVI</td>
<td>Sludge Volume Index</td>
</tr>
<tr>
<td>TCOD</td>
<td>Total Chemical Oxygen Demand</td>
</tr>
<tr>
<td>TMP</td>
<td>Transmembrane Pressure</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>UAE</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>USB</td>
<td>Upflow Sludge Blanket</td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>VLR</td>
<td>Volumetric Loading Rate</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile Suspended Solids</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>The Raw Data of the First Experimental Stage (25 °C)</td>
<td>214</td>
</tr>
<tr>
<td>A2</td>
<td>The Raw Data of the Second Experimental Stage (35 °C)</td>
<td>221</td>
</tr>
<tr>
<td>A3</td>
<td>The Raw Data of the Third Experimental Stage (45 °C)</td>
<td>228</td>
</tr>
<tr>
<td>B</td>
<td>The Raw Data of the Forth Experimental Stage (Drastic Temperature Changes)</td>
<td>235</td>
</tr>
<tr>
<td>C</td>
<td>Quantitative Correlations Between Mixed Liquor Temperature (Independent) and Responses (Dependents)</td>
<td>242</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Membrane technology did not exist before the sixties of the last century (Richard, 2000). Despite that, Prof. Enrico Drioli in his keynote lecture at the Water Environment Membrane Technology Conference (2004) in Seoul said "Membrane technology is the call for the future". Furthermore, Christian (2005) has reported that in three decades, 50% of all separation processes will be accomplished by membranes.

First systematic studies of membrane phenomena are ascribed to the 18th-century philosophers and scientists, when Abbe Nolet in 1748 found the word osmosis to describe permeation of liquid through a diaphragm (Richard, 2000). The same researcher also reported that, through the 19th and early 20th centuries membranes had no industrial or commercial applications, but they were used as laboratory tools to study physical and chemical theories. Loeb-Sourirajan in the early 1960's, through his process, for creating defect-less and high flux reverse osmosis membrane, managed to transform membrane filtration from a laboratory technique to an industrial application (Wallace, 1967).
Since 1960 interest in membrane filtration process has grown gradually, and membrane technology now is the object of substantial universal research, development, commercial activity and full-scale application (Joël et al., 1996). Hence, membrane filtration is on the edge of becoming a mainstream filtration process and it is already competing with the conventional system techniques (Christian, 2005).

Many researchers have defined membrane with different words. Joël et al. (1996) defined it as a thin layer of material that is capable of separation materials as a function of their physical and chemical properties when a driving force is applied across the membrane. Otherwise, membranes are often most of the times the first choice because of their decreasing costs, superior performance for improving a broad range of water qualities, use of less disinfection chemicals and smaller storage tanks, and feed facilities (Christian, 2005).

Membrane filtration process has been utilized in a big range of applications. Membrane bioreactor (MBR) is one of them. MBR is a modification of the conventional activated sludge system (AS), which uses membrane instead of a clarifier to accomplish the process of separating treated water from the mixed liquor (Cicek et al., 1999). MBR technology combines the biological degradation process by AS with a direct solid-liquid separation by micro or ultrafiltration membrane technology (with a pore-size range of 0.05 to 0.4 μm) (Pierre et al., 2006). The application of AS in wastewater treatment dates back to the late 1800s, upon the introduction of filters, contact beds, trickling filters and septic tanks. Two decades later, the first full scale fill and draw AS plant treating 80,000 gpd was built in Salford, England in 1914 (Ng., 2002). By Smith et al. in 1969, the membrane application in wastewater treatment was first described when the sedimentation in the AS was replaced by ultrafiltration.

Unlike the conventional AS process which depends on a gravity settlement, MBR uses membrane filtration unit for the separation of biomass. Therefore, it is competent to complete biomass retention in the bioreactor and thus to retain
potentially pathogenic organisms (Seung., 2004). In AS system, only the fraction of activated sludge that forms flocs and settles can be retained. While in MBR all components of the biomass that are larger than the membrane cut-off are retained. Thereby, MBR produces a high-quality and cell-free effluent, and reduces the need for disinfection necessities of treated wastewater effluents (Cote et al., 1998; Jefferson et al., 2000). Long sludge retention time (SRT) in the MBR process averts the washout of slow-growing microorganisms such as nitrifying bacteria and other bacteria responsible for degrading complex compounds. Therefore, MBRs enhance the nitrifying function and complex organic contaminant degradation ability compared to a conventional biological wastewater process of AS system at short HRT (Muller et al., 1995). Beside the superior effluent quality and the absolute control of solids retention and hydraulic retention times, the smaller volume and footprint is one of the main advantages of MBR.

In recent years, MBR technology has been playing a very important role in water and wastewater treatment. Presently, MBR technology is more widely applied due to the development of less expensive membranes, the lack of fresh water and the surge in water reuse. Therefore, it has been used to treat a wide range of municipal and industrial wastewaters. Currently, there are more than 1000 MBR plants installed in Asia, Europe, and North America with many newly proposed or under construction (Schier et al., 2009).

1.2 Problem Statement

MBR is an ideal option for municipal and industrial wastewater treatment applications, particularly in mesophilic condition. It has been exploited widely to treat various kinds of wastewater in many cities around the world. Nevertheless, MBR has not yet been utilized in the treatment applications of high-temperature (35 °C and above) municipal wastewater.
There are numerous high-temperature wastewaters in the practical life, and they are from different sources. In general, wastewaters can be divided into two main types according to the source, industrial wastewater and municipal wastewater. The high-temperature industrial wastewaters are such as from pulp, paper, newspaper and distillery industries. On the other side, the high-temperature municipal wastewaters are normal municipal wastewaters (sewage) affected by the atmosphere temperatures. For example, municipal wastewater in the arid and semi-arid regions, a type of which is the Arabic Gulf Cooperation Council States (AGCCS) wastewater, particularly during the summer time.

AGCCS is located in the Arabian Peninsula in the Middle East, to the south of Iran. It consists of six countries, which are Saudi Arabia, Oman, UAE, Qatar, Bahrain and Kuwait. The majority of AGCCS lands are deserts and semi-arid territories with a dry-hot climate and high temperatures in the summer time. It is one of world areas, where temperatures above 48°C/120°F are not exceptional. In the Omani capital city Muscat, the temperatures during the summer time vary from 40 to 50°C. In Saudi Arabia, the average summer temperature is 45°C, but temperatures up to 54°C are common. In Kuwait, the temperatures during the summer time continues rising up to 53°C under the shade (Department of Economic Studies and Statistics, 2006; Omani Meteorological DDG, 2008) (Fig 1.1). According to the first source, climatic conditions are contributed to the absence of permanent rivers, water bodies, minimal rainfall and limited amount of groundwater. These factors are behind the lack of water and water resources in AGCCS. As a result, the limited natural water resources give a significant importance for the applications of water conservation and wastewater/seawater treatment in AGCCS.
Figure 1.1 The temperatures map in AGCCS and Middle East.
(http://www.findlocalweather.com/weather_maps/imagefetch.php?size=640x480&type=currents&image=mide_temperature_i1.png)

Although, AGCCS are considered an underdeveloped countries, they are still clean countries and there are a real concern and conservation for the environment and the public health. Many programs have been developed in AGCCS, to enhance the public aware about the environment, especially water-resources. Therefore, they have been founding organizations for environment and water-resources protection and establishing projects on seawater desalination and wastewater treatment.

In fact, there is a big usage of membranes for water and seawater treatment (desalination) in AGCCS, but not for wastewater treatment. Except Al-Ansab MBR treatment plant in Muscat city, which is under construction there is no full-scale MBR plants in AGCCS. Notwithstanding, the many properties of MBR, it has not yet gained popularity in AGCCS, where conventional AS treatment systems are still widely used. Therefore, it is very important and necessary to study the feasibility of
MBR in treating high-temperature municipal wastewater, especially when there are no real studies on such subject.

Many researchers have been exploring the different applications of MBR process during last two decades. Majority of them focused on the performance of MBR at mesophilic conditions and low temperatures (Darren et al., 2005; Aloice and Tatsuya, 1996; Zhang et al., 2006). Groups of researchers have studied the efficiency of MBR in treating various kinds of industrial wastewater, while other groups were involved in investigating the phenomena of membrane fouling (Ognier et al., 2002; Pierre et al., 2006; Fangang et al., 2006). In spite of the efforts spent on studying the applications of MBR in treating high temperature industrial and synthetic wastewater (João et al., 2005 Zhang et al., 2005; Kurian & Nakhla, 2006), the application of MBR in treating high temperature municipal wastewater remains very limited. Therefore, this study is conducted to investigate such area of knowledge in details (for more details see Table 2 in chapter 2).

1.3 Aim and Objectives

Despite the big number of the previous studies related to the subject of MBR applications, the knowledge area of MBR treating high temperature municipal wastewater (HTMW) has not yet been investigated before this study. The question of “What is the effect of temperature on the performance of MBR system treating municipal wastewater” has not yet been answered. Thus, the overall aim of this research was to study and evaluate the feasibility of MBR process application in treating high-temperature municipal wastewater for the purpose of reuse and recycle. This can be achieved by the following specific objectives:-

I. To study the effect of high temperatures on the process of biodegradation (biological removal efficiency) and membrane filterability (final removal efficiency) in MBR system treating
municipal wastewater, in terms of Chemical oxygen demand, Ammonia nitrogen, Suspended solids, Turbidity and Effluent colour.

II. To study the effect of high temperatures on the biological properties in terms of Biomass growth, Sludge volume index, Hydraulic viscosity, Soluble microbial products and Extracellular polymeric substances ratio, pH and Supernatant turbidity.

III. To investigate the phenomena of membrane fouling at high temperature conditions in terms of Soluble microbial products and Extracellular polymeric substances ratio, and Transmembrane pressure and Backwash pressure, and to determine the dominant fouling factors.

IV. To evaluate the performances of MBR process treating high temperature municipal wastewater under two different (high and low) membrane hydraulic fluxes.

V. To study the effect of drastic temperature changes on the performance of MBR process treating municipal wastewater, in terms of Removal efficiencies, Biological properties and Membrane fouling phenomena at low membrane hydraulic flux.

1.4 Scope of the Study

The main aim of this research is to study and investigate the performance of MBR process in treating HTMW under two different hydraulic fluxes. To achieve
the main aim and the specific objectives of this research, the scope of the work includes the following tasks.

A significant work has been conducted on MBR applications for high temperature wastewater treatment. However, the relationship between temperature and MBR process in municipal wastewater treatment has not yet been fully studied. Many areas need to be investigated such as the relationship between the temperature and each of AS properties, biological removal efficiency, final removal efficiency, membrane fouling. The effect of drastic temperature changes on the MBR process is also required more investigations. Therefore, this research was initiated by conducting a thorough literature review on the use of MBR applications for different kinds of high temperature wastewater treatment. Operational factors that affect the process, removal efficiencies, membrane fouling phenomena and biomass characterization are the issues have been extracted from the literature review. This literature review found out unanswered questions related to the application of MBR in treating HTMW. Therefore, this study has been carried out to present reliable answers for such questions.

Based on the research objectives, the second task was involved in setting up and developing an appropriate lab-scale system to conduct the experimental study. This system was a submerged aerobic MBR and it was equipped with an aeration system and heating system. The plan of experimental work included operating of three different temperature stages (25, 35 and 45 °C) and one drastic temperature changes stage. A 3.8 litre lab-scale glass reactor was seed with an inoculum of AS (seed sludge). The inoculum was obtained from the return’s activated sludge (RAS) line of Al-Ansab municipal wastewater treatment plant at Muscat City in Oman. The system was fed with a screened row wastewater obtained from Pulai Utama full scale municipal wastewater treatment plant. To increase the concentration of the feed wastewater it was mixed with a certain quantity of synthetic wastewater. All analytical measurements performed in this study were conducted according to Standard Methods for Examination of Water and Wastewater (APHA, 2005).
The third task contained the analysis of the results that were obtained from the experimental work. This task included also a detailed discussion of the analysis. Finally, the main findings of this study were summarized in a conclusion to present the study contribution in view of the objectives.

1.5 Research Significance

The urgent need to fresh water resources and good-quality treated water in AGCCS and other regions around the world could obviously reflect the importance and the significance of this research. The main obstacle preventing MBR technology from reaching AGCCS is the unknown end of the direction of treating HTMW by using MBR system. Therefore, discovering such area of knowledge and answering such important questions of this application would be very helpful in making the correct decision. In specific, the importance of this study is as follows:-

I. This study fills an important gap found clearly in the literature of MBR process.

II. This study answers the question of “What is the performance of MBR in treating HTMW”?

III. This study evaluates the effect of high temperatures and drastic temperature changes at different hydraulic fluxes on the MBR process.

IV. This study provides a complete view about the possibility of MBR application in treating HTMW and suggests the reliable solutions to enhance the process and overcome the potential problems.
1.6 Organization of the Thesis

This thesis consists of six chapters. The first chapter introduces the technology of membrane bioreactor and its importance in wastewater treatment. It also includes the problem statement and the objectives, significance and the scope of the study. Chapter 2 gives an overview of the theoretical background of studies conducted on wastewater treatment systems, especially compact systems. It reviews the various issues of MBR and its applications. Chapter 3 presents a perspective and an outline of the study, materials and methods as well as detailed procedures of each experiment conducted.

The fourth chapter analyses the results of the experimental studies that have been illustrated in chapter 3. It also discusses the results obtained from MBR application in treating municipal wastewater at temperatures of 25 °C, 35 °C and 45 °C and at drastic temperature changes condition. The last chapter presents the conclusions of this study and the recommendations for future works.
REFERENCES

http://www.findlocalweather.com/weather_maps/imagefetch.php?size=640x480&typ e=currents&img=mide_temperature_i1.png

http://www.werf.org/AM/Template.cfm

