EVALUATION OF EFFECT OF VARIABLE MESSAGE SIGNS ON TRAFFIC SURVEILLANCE

ARASH MORADKHANI ROSHANDEH

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Transportation and Highway)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MAY 2009
Acknowledgements

I would like to express my deep gratitude for the constant guidance and support from my supervisor, Professor Othman Che Puan, during the course of my graduate study. His insight, suggestions and criticism contributed in large measure to the success of this research.

My thanks also goes to Kuala Lumpur City Hall (DBKL), to the UTM School of Postgraduate Studies (SPS) and Faculty of Civil Engineering (FKA) for their support to conduct this work.

Finally, my greatest thanks and appreciation go to my family. A thousand thanks to my parents. I thank my father for his unfailing wisdom and guidance, my mother for her caring and strength, my brothers, Armin and Aref, and my sister, Azita, for their friendship.
Some years ago, progress in road telematics had made it possible to introduce time travel information in real time on VMS devices. Such information can lead road users to avoid congested areas as well as to waiting in a better condition for the end of the congestion. Variable message signs (VMS), also known as changeable message signs (CMS) or dynamic message signs (DMS), are traffic control devices to communicate with motorists. The primary purpose of a VMS is to provide information regarding roadway, traffic, or adverse weather conditions, however, the signs are additionally used to display travel times and public service announcements. This study attempts to utilize archived traffic data of a freeway to assess the accuracy with which VMS display travel time estimates, and driver response to display messages of varying lengths and formatting. Results show that usage of Variable Message Signs reduces the occupancy during the duration of the incident. The results demonstrated that VMS has no significant impact on gap. The variable message signs (VMS) have been widely used in guiding and managing the dynamic traffic with development of intelligent transportation technologies.
ABSTRAK

Beberapa tahun dulu, kemajuan dalam telematics jalanraya telah menjadikan ia berkemungkinan untuk memperkenalkan informasi perjalanan masa dalam masa benar dalam peralatan VMS. Infomasi dapat mengarahkan pengguna jalanraya untuk mengelakkan kawasan yang sesak selain menunggu dalam keadaan yang selesa untuk pengurangan keadaan sesak. Variable message signs (VMS), juga dikenali sebagai changeable message signs (CMS) or dynamic message signs (DMS) adalah peralatan pengawalan trafik untuk berkomunikasi dengan pengguna. Tujuan utama VMS adalah untuk member informasi berkenaan lebuhraya, trafik atau pun keadaan cuaca yang teruk. Bagaimanapun, tanda digunakan untuk menunjukkan masa perjalanan dan pengumuman kemudahan public. Kajian ini melihat bagaimana data trafik dari arkib digunakan dalam mengenal-pasti ketepatan dimana VMS dapat menunjukkan masa perjalanan dan maklum-balas pemandu untuk menunjukkan mesej yang berbeza panjangnya dan format. Dapatan kajian menunjukkan penggunaan Variable Message Signs mengurangkan kepenggunaan semasa kejadian. Dapatan menunjukkan VMS tiada impak yang signifikan. Variable message signs telah digunakn secara meluas dalam membantu dan mengurus trafik dengan penubuhan teknologi pengangkutan pintar.
TABLE OF CONTENTS

| CHAPTER |
|-----------------|-----------------|-----------------|
| DECLARATION OF THE STATUS OF THESIS | i |
| SUPERVISOR 'S DECLARATION | ii |
| TITLE PAGE | iii |
| DECLARATION | iv |
| ACKNOWLEDGEMENTS | v |
| ABSTRACT | vi |
| ABSTRAK | vii |
| TABLE OF CONTENTS | viii |
| LIST OF FIGURES | x |
| LIST OF TABLES | xii |

INTRODUCTION

1. Background of the Study 1
2. Statement of the Problem 2
3. Aim and Objectives of the Study 3
4. Importance of the Study 4

LITERATURE REVIEW

1. Effects on Driver Behaviour 4
2. Speed Limit Signs 6
3. Danger Warning Signs 10
4. Informative Signs 12
5. Driver Attitudes 16
 1. Speed Limit Signs 17
CHAPTER | TITLE | PAGE
--- | --- | ---
2.5.2 | Danger Warning Signs | 19
2.5.3 | Informative Signs | 20
2.6 | Design, Understanding and Recall of Signs | 21
2.7 | Accidents | 35
2.8 | Message Data Bases | 37
2.9 | Regulations, and Use of VMS | 37
2.9.1 | The Nordic Countries | 39
2.9.2 | Other European Countries | 42
2.10 | Criteria for VMS | 45
2.11 | VMS -Behavioural Background | 46

3 | METHODOLOGY | 48
3.1 | Network Description | 48
3.2 | Data Description | 50
3.3 | Data Source | 52
3.4 | Operation of Variable Message Signs | 52

4 | RESULTS AND ANALYSIS | 53
4.1 | Evaluation of Performance of Network without VMS | 53
4.2 | Evaluation of Performance of Network with VMS | 54
4.3 | Comparison Based on Occupancy | 56
4.4 | Comparison Based on Gap | 56

5 | CONCLUSIONS AND RECOMMENDATIONS | 58
5.1 | Introduction | 58
5.2 | Findings and Discussion | 58
5.3 | Suggestions for Future Studies | 59
5.4 | Conclusion | 60

REFERENCES | 61
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of signs displayed above a three-lane-road outside Munich. The upper signs have a shorter perception time than the lower signs. Steinhoff et al., 2000.</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Warning sign for bend. Winnett & Wheeler, 2002</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Left: Sign showing “E6 Accident, Risk of queue, Tingstad tunnel”. Right: Sign showing “Accident 7 km, Choose E22 S, 700 m”. Kronborg, 2001.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Slippery road condition sign and minimum headway sign. Rämä, 2001</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Signs for congestion used in simulator studies in Germany. Note that the colour coding cannot be seen in the figures here. Tsavachidis et al., 2000.</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Example of VMS design for congestion used in driving simulator experiments in the United Kingdom. Richards et al., 2004.</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Examples of different speed limit signs: without circle, with red circle, and with amber lanterns, respectively. Luoma et al., 2001.</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Signs for queue used in tests in the United Kingdom. Cooper et al., 2004</td>
<td>29</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.9</td>
<td>Two examples of four-line bilingual messages. Jamson, 2004</td>
<td>29</td>
</tr>
<tr>
<td>2.10</td>
<td>Example of pictograms in the interview study on comprehension.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The pictograms in the figure show fog warning messages, but were</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not recommended because of bad comprehension and frequent clear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>misunderstandings. Luoma & Rämä, 2001.</td>
<td>31</td>
</tr>
<tr>
<td>2.11</td>
<td>Signs used in the field study on the recall of signs. Schirokoff &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Luoma, 2005</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>VMS used in the Finnish study on effects of variable speed limits.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hautala et al., 2002</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>MRR1 Freeway, Kuala Lumpur</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Network (name of nodes)</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Occupancy (%) vs. Departure Time Interval (without VMS)</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Gap (Secs) vs. Number of Vehicles (%) (without VMS)</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Occupancy (%) vs. Departure Time Interval (with VMS)</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Gap (Secs) vs. Number of Vehicles (%) (with VMS)</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Occupancy (%) vs. Departure Time Interval (with VMS and without VMS)</td>
<td>56</td>
</tr>
<tr>
<td>NO. TABLE</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Traffic flow effects in adverse, normal and good road surface conditions, respectively. (Hautala et al., 2002.)</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Gap (Secs) vs. Number of Vehicles (%) (with and without VMS)</td>
<td>57</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A Variable Message Sign is a device used to convey information to motorists about events that might affect their travel experience and safety. A variable message sign, often abbreviated VMS is an electronic traffic sign often used on roadways to give travelers information about special events. Such signs warn of traffic congestion, accidents, incidents, roadwork zones, or speed limits on a specific highway segment. In urban areas VMS are used within Parking Guidance and Information systems to guide drivers to available car parking spaces. They may also ask vehicles to take alternative routes, limit travel speed, warn of duration and location of the incidents or just inform of the traffic conditions (Changeable Message Signs – Engineering Policy Guide, 2008).

One of the fundamental requirements of an intelligent road vehicle is to assist the driver in finding their anticipated destination in the most economical, reliable and safe way. Dynamic Route Guidance systems are likely to emerge in a variety of forms over the coming years and offer the potential for improved efficiency both to individual guided drivers and to the network as a whole (Christopher O. Nwagbosu, 1997). With the increasing concern on traffic congestion in most of metropolitan cities, Advanced
Traffic Management and Traveler Information Systems are conducted as a possible solution to solve traffic problem. The acronym VMS stands for Variable Message Sign. It is a sign for the purpose of displaying one of a number of messages that may be changed or switched on or off as required (CEN, 2005).

The use of variable message signs (VMS) is generally considered to be a powerful tool to influence route choice so as to increase safety and comfort during driving and improve network performance and to make optimum use of available capacity. Some of metropolitan cities installed VMS on arterial street and freeways to guiding drivers to make choice when there is some unexpected events on the road segment. In general, the function of VMS can be concluded into 3 categories: lane control, speed control and prescription. It not only provides driver information to avoid unexpected events, but also alternative route for driver to make choice (Srinivas Peeta and Shyam Gedela, 2007).

1.2 Statement of the Problem

VMS systems have a significant impact on roadway efficiency, with benefits such as time saving. VMS is an electronic message sign strategically placed along the road network with alternative roads to provide information and recommendations for drivers on traffic conditions. VMS allows operators in Traffic Control Centre to activate or upload new messages via software (Dia, H, 2000 and Hendrickson, C; et.al 1998).

Therefore this study attempts to estimate the effects of Variable Message Signs on traffic control and drivers making decisions.
1.3 **Aim and Objectives of the Study**

Variable Message Signs (VMS) plays vital roles in Intelligent Transportation System (ITS) such as dynamic route guidance. However, when VMS are implemented along highways, their presence or messages that appear on the VMS affects traffic operations to a certain extent. This study is an attempt to quantify effects of VMS on traffic condition. The study was carried out based on evaluation of effect of VMS in terms of occupancy and gap.

1.4 **Importance of the Study**

This study is conducted to consider the effects of Variable Message Signs in traffic surveillance. The results of this survey will help improve the quality and availability of traveler information, and will inform the agency’s decisions about improving and expanding VMS technology. Optimized VMS systems will benefit drivers in improved travel times and arrival time certainty.
REFERENCES

http://epg.modot.org/index.php?title=616.3-Changeable Message Signs-
%28CMS%29

Kent, United Kingdom.

Hogema, J.H. & Goebel, M.P. (2000). In-car versus roadside queue warning information: a driving simulator study. TM-00-D004. Soesterberg, the Netherlands: TNO Human Factors TM.

