EFFECTS OF PROSTHESIS STEM LENGTHS AND TAPERS ON STRESS DISTRIBUTION IN CEMENTED HIP ARTHROPLASTY

ABDUL HALIM BIN ABDULLAH

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECTS OF PROSTHESIS STEM LENGTHS AND TAPERS
ON STRESS DISTRIBUTION IN CEMENTED HIP ARTHROPLASTY

ABDUL HALIM BIN ABDULLAH

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

MARCH 2009
To my beloved family
ACKNOWLEDGEMENT

The work described herein was supervised by Professor Dr. Mohd Nasir Tamin and Ir. Dr. Mohammed Rafiq Abdul Kadir of the Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, and to whom I would like to express my appreciation. His support, encouragement and patience have proved invaluable in the completion of this work.

I am also indebted to others who gave freely their valuable time and advice to make this work possible:

To the entire Computational Solid Mechanics Laboratory (CSMLab) members, for their valuable assistance and friendly cooperation. I would like to mention, especially Fethma M. Nor and Farizana Jaswadi for their continual advice on computer and software issues.

To the government of Malaysia and Universiti Teknologi MARA Malaysia for providing me with the scholarship.

Finally, I would very much like to extend my heart felt thanks to all my friends; office mates, particularly Muhammad Adil Khattak, Hassan Osman, Mohd Azril Amil and Nazman Che Ibrahim; my wife, my parents and my family whose continuing encouragement, support, confidence, and enthusiasm have made the completion of this work possible.
Stress shielding and bone remodeling effects are critical issues in considering the biomechanics of femur that has undergone total hip replacement (THR). Stress shielding occurs when local stress distribution in the presence of the prosthesis is lower than that observed with intact femur. In this study, the stress distributions in intact and THR femur are established using finite element method. The THR femur model consists of a cemented hip Ti-6Al-4V prosthesis implanted inside the femoral canal. Major muscle loads and contact forces are simulated for walking (toe-off phase) and stair-climbing conditions that represents 800N of bodyweight. The effects of Charnley’s prosthesis stem lengths and tapers on the resulting stress and strain distributions are investigated. For the stem length cases, results show that tensile stress dominates in the lateral plane while compressive stress in the medial plane of the femur. In the iso-strain condition, greater part of the load to the THR femur is shifted to the stiffer Ti-6Al-4V alloy prosthesis. The stresses in the surface of the cortical bone are relatively low in the central region of the THR femur. The largest magnitude of maximum principal stresses are 24 and 34 MPa for walking and stair-climbing load cases, respectively, for THR femur while the corresponding stress levels for intact femur are 22 and 29 MPa, respectively. For the stem taper cases, the magnitude of Tresca stress for the THR femur in stair-climbing load case remains higher in the region of 85 MPa while the walking load case induces around 40 MPa. The stress range in the straight and single taper stem prosthesis is lower than 260 MPa, while localized Tresca stress is in the order of the yield strength of Ti-6Al-4V alloy for double and triple taper stem design.
ABSTRAK

TABLE OF CONTENT

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi

1 INTRODUCTION
1.1 Cemented Hip Arthroplasty 2
1.2 Statement of Research Problem 3
1.3 Research Questions 3
1.4 Objectives 4
1.5 Scope of Study 4

2 LITERATURE REVIEW
2.1 Anatomy of Hip Joint and Femur 5
2.2 Muscles Reaction on Femur 8
2.3 Stress Shielding Effects 10
2.4 Aseptic Loosening of Cemented Hip Arthroplasty 12
 2.4.1 Osteolysis Induced by Wear Debris of Bone Cement 13
 2.4.2 Bone Remodeling Triggered by Stress Shielding 14
2.4.3 Cement Mantle Failure

3. OVERVIEW OF TOTAL HIP REPLACEMENT IN ASIA
3.1 Introduction
3.2 Research on Total Hip Replacement for Asian Population
3.3 Anthropometric Study of Asian Population

4 RESEARCH METHODOLOGY
4.1 Finite Element Modeling
 4.1.1 Intact Femur and THR Femur
 4.1.2 Different Prosthesis Stem Lengths
 4.1.3 Tapered Prosthesis Stems
4.2 Materials Properties
4.3 Loading and Boundary Conditions
 4.3.1 Walking (toe-off phase) Load Case
 4.3.2 Stair-climbing Load Case

5 MATHEMATICAL MODELING AND ANALYSIS
5.1 Mathematical Formulation
5.2 Finite Element Analysis of Intact and THR Femur
 5.2.1 Intact Femur Modeling
 5.2.2 THR Femur Modeling

6 RESULTS AND DISCUSSION
6.1 Effects of Different Prosthesis Stem Lengths on Stress Distribution
 6.1.1 Maximum Principal Stress Distribution
 6.1.2 Absolute Maximum Shear Stress Distribution
6.2 Effects of Prosthesis Tapers on Stress Distribution
 6.2.1 Maximum Principal Stress
 6.2.2 Equivalent Shear Stress
7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions 67
7.2 Recommendations 68

REFERENCES 70

APPENDIX 81
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Statistics of the various prevalence or incidence rates against the populations of Asian country, annually</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Patients details for Total Hip Replacement (THR) as reported in Japan and Malaysia.</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean weight and stature of elderly in different countries</td>
<td>20</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of anthropometric data related to Total Hip Replacement</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Finite element cases investigated in this study</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Number of elements for different FE models employed</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Mechanical properties of materials used in FE model</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Location and magnitude of hip joint contact and muscles forces during walking activity</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Location and magnitude of hip joint contact and muscles forces during stair-climbing activity</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Different types of joint in human body</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic of the femur and hip bone. The hip joint is the articulation of the head of the femur and the acetabulum of the hip bone. (Young, 1997)</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Muscles acting on the (a) Anterior and (b) Posterior thigh femur. (Wong, 2006)</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic of an implanted total hip replacement on the left and a natural hip on the right</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Simple scheme of stress shielding</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean stature of male and female for different countries</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean weight of male and female for different countries</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Body dimensions, landmarks and measurement procedures for body dimensions (Mokdad, 2002)</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Illustration of the cross section of an intact femur (left) and THR femur (right) along with major components</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Solid models of (a) intact femur and (b) THR femur</td>
<td>27</td>
</tr>
</tbody>
</table>
4.3 A 10-node quadratic tetrahedron elements

4.4 Finite element mesh for (a) intact femur, (b) THR femur, (c) Charnley prosthesis and (d) bone-cement mantle

4.5 Illustration of different stem lengths in THR femur (S – short, M – medium or original and L – long stem)

4.6 Different designs of tapered prosthesis (a) straight (original), (b) single taper, (c) double taper and (d) triple taper

4.7 Loading points and boundary condition of THR model

4.8 The coordinate system at left femur

4.9 Loading condition of THR femur for walking load case

4.10 Loading conditions of THR femur for stair climbing load case

5.1 Comparison of Maximum principal strain at medial (left) and lateral (right) plane of Duda’s and this study

5.2 Comparison between references and this study at medial (left) and lateral (right) plane of intact femur for walking load case

5.3 Comparison between references and this study at medial (left) and lateral (right) plane of intact femur for stair climbing load case

5.4 Comparison between references and this study at medial (left) and lateral (right) plane of THR femur for stair climbing load case

6.1 Definition of the different planes referred to in this study
6.2 Variation of maximum principal stresses along the lateral plane of THR femur for different stem lengths corresponding to walking load case

6.3 Variation of maximum principal stresses along the lateral plane of THR femur for different stem lengths corresponding to stair-climbing load case

6.4 Axial stress (σ_{33}) distribution in THR femur for walking and stair-climbing load cases ($h = 120$ mm)

6.5 Identification of regions along the THR femur

6.6 Tresca stress distribution in PMMA cement mantle for different load cases

6.7 Variation of shear stress component (τ_{23}) in stem-cement interface along the lateral plane of THR femur for different stem lengths corresponding to stair-climbing load case

6.8 Variation of maximum principal stresses along lateral plane of THR femur for different taper prosthesis corresponding to walking and stair-climbing load cases

6.9 Different respective levels of THR femur

6.10 Variation of maximum principal stresses in cortical surface at different sections along the femur for walking and stair climbing load cases

6.11 Tresca stress distribution in the cross section of intact femur under different loading

6.12 Tresca stress distribution in the cross section of different THR femur for walking load case
6.13 Tresca stress distribution in the cross section for different THR femur for stair-climbing load case 62

6.14 Tresca stress distribution in prosthesis for different taper stem at walking load case 64

6.15 Tresca stress distribution in prosthesis for different taper stem at stair climbing load case 64

6.16 Tresca stress distribution in bone-cement for different taper stem at walking load case 65

6.17 Tresca stress distribution in bone-cement for different taper stem at stair climbing load case 66
CHAPTER 1

INTRODUCTION

Total hip replacement (THR) is a common procedure to reform the hip joint. In this procedure, hip joints are replaced by artificial materials to relieve the pain and restore the function of the joint (Lu, 2001). There are approximately 800,000 total hip replacements being performed around the world, annually (Cristofolini, 1997). Indeed, it is projected that the number of hip failures will increase to 6.3 million by the year 2050 (Cooper et al, 1992; Lau, 2001).

In a typical THR, the diseased femoral head of femur (the bone that extends from the hip to the knee) is excised and replaced by a femoral component which consists of a femoral head, while the diseased surface of acetabulum is reamed and inserted by the artificial cup. The acetabulum is a surface layer of the socket in the pelvis (the two large bones that rest on the lower limbs and support the spinal column).

There are many different shapes, sizes, and designs of artificial components for the hip joint. Efforts to improve designs were continually developed to improve the fit in the femur (Kassim, 1997). It is important for the hip prosthesis to be implanted securely in the femur so that it functions properly as in normal condition. Apart from different types of design and materials, there are two main methods currently being used to fix the hip prosthesis to the femur, namely cemented and cementless total hip replacement. In general, bone cement is packed between the femoral bone and stem for cemented method. For cementless method, a porous coating layer is attached to the surface of the stem or the outer surface of the metal.
back that supports the acetabular cup. After the components are inserted, bone typically grows into the porous layer to form a permanent bond which also known as bone remodeling (Lu, 2001).

1.1 Cemented Hip Arthroplasty

The most successful cemented total hip replacement (THR) was developed by John Charnley in 1972. He introduced polymethyl-methacrylate (PMMA) as the bone cement and ultra-high molecular weight (UHMW) polyethylene for the acetabular cup. The prosthesis, known as ‘low-friction’ arthroplasty, consists of an all-polyethylene acetabular component and a stainless steel polished femoral component. Since then, Charnley’s prosthesis is commonly used and regarded as the reference or benchmark design (Masterson et al., 1999). The long-term clinical follow-up studies have demonstrated outstanding performance of Charnley’s prosthesis. A 25-year follow-up review for eight hospitals worldwide showed that 92% of THR cases using Charnley’s prosthesis remain good and functional until death (Older, 2002). However, frequently reported problems on THR femur failure is related to aseptic loosening.

Aseptic loosening refers to the failure of the bond between an implant and bone in the absence of infection. Aseptic loosening of joint implants is a disabling condition that can affect patients 10 to 20 years after joint replacement surgery (Yousef et al., 2007). The Norwegian Arthroplasty Register reported more than 70% of the revisions of the hip replacements were due to aseptic loosening (Furnes, 2002). This is also supported by researchers through clinical review for 15 to 25 years follow-up of primary Charnley low-friction arthroplasty (Ohannes et al., 2005; David and Andrew, 2003). Aseptic loosening may occurred due to biomechanical factors such as osteolysis induced by wear debris of bone cement, cement mantle fracture, and poor bone remodeling triggered by stress shielding (Lu, 2001; Ramaniraka et al., 2000; Masterson et al., 1999).
1.2 Statement of the Research Problem

Both stress shielding and bone remodeling effects are critical issues in considering the biomechanics of THR femur. Stress shielding occurs when local stress distribution in the presence of the prosthesis is significantly lower in magnitude than that observed with intact femur. It happens when there is a mismatch in the stiffness or elastic moduli of the femoral prosthesis and the bone. In the iso-strain condition, the stiffer femoral shaft will sustain the greater part of the load, primarily due to the body weight. Consequently, significant stress gradient occurs across the prosthesis-bone interface particularly in the proximal region of the femur. Such stress alternation leads to extensive bone resorption in the region leading to loosening of the prosthesis stem. This study examines the effects of different prosthesis stem lengths and tapers on the stress and strain distribution in cemented hip arthroplasty under different loading conditions. Biomechanics of THR femur is analyzed using finite element method. Finite element modeling of THR femur calls for accurate representation of the femur and the complex loading due to active muscle forces during the various activities including walking and stair-climbing.

1.3 Research Questions

This study addresses the following questions regarding the stress distribution in intact and THR femur.

1. What constitute a suitable finite element model for THR femur in cemented hip arthroplasty?
2. What are the effects of different prosthesis stem lengths on the stress distributions along the femur?
3. What are the effects of tapered prosthesis stems on the stress distributions along the femur?
4. What are critical prosthesis design parameters and values for Asian population?
1.4 Objectives

The objectives of this study are to:

i. Develop finite element modeling procedure for cemented hip prosthesis and femur for total hip replacement (THR).

ii. Perform static analysis of two different loading activities to examine the stress distribution along the femur and hip prosthesis.

iii. Investigate effects of hip prosthesis geometry, namely stem lengths and tapers on the resulting stress distribution along the femur and prosthesis.

1.5 Scope of Study

The scope of this finite element simulation covers the followings:

i. Intact or healthy femur.

ii. Femur with total hip replacement, with cemented Ti-6Al-4V prosthesis.

iii. Parametric study on (a) different stem lengths and (b) different stem tapers.

iv. Two loading cases (a) walking(toe-off phase) and (b) stair-climbing.

Kassim A.A (1997), Stress and Stability Analysis of the Neck-Stem Interface of the Modular Hip Prosthesis, PhD thesis, Department of Mechanical Engineering, Queen’s University, Canada.

Lu, Z (2001), Finite Element Analysis of the Effects of Stem Geometry, Surface Finish and Cement Viscoelasticity on Debonding and Subsidence of Total Hip
Prosthesis, PhD thesis, Faculty of the Graduate School, University of Southern California.

