PENCIRIAN SIFAT KOMPOSIT POLIMER BERGENTIAN SEMULA JADI
UNTUK APPLIKASI STRUKTUR

LIEW SHAN CHIN

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat
pengaugerahan Ijazah Sarjana Kejuruteraan Awam

Fakulti Kejuruteraan Awam
Universiti Teknologi Malaysia

NOVEMBER 2008
CHARACTERIZATION OF NATURAL FIBRE POLYMER
COMPOSITES FOR STRUCTURAL APPLICATION

LIEW SHAN CHIN

A report submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Engineering (Civil – Structure)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

NOVEMBER 2008
Specially dedicated to my beloved mother Wendy Lee Wai Yong, beloved father Liew Moon Fah, sister, brother, lecturers, and friends.
ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my supervisors, Assoc. Prof. Dr. Jamaludin Bin Mohamad Yatim (Faculty of Civil Engineering) and for his patience, guidance, support and time which have contributed thoroughly in this study. I would like to express sincere thanks to my co-supervisor, Assoc. Prof. Dr. Wan Aizan (Faculty of Chemical and Natural Resources Engineering) for her guidance and support to ensure this study successfully done.

I would like to thanks the staffs of Structures and Materials Laboratory, Faculty of Civil Engineering, Materials Laboratory, Faculty of Mechanical Engineering and Bio Polymer Laboratory, Faculty of Chemical and Natural Resources Engineering, for their assistance in the experimental works.

Lastly, I would like to express my appreciation to those who have given me either direct or indirect assistance in this project.
ABSTRACT

Oil palm fibre which is relatively low cost and abundantly available has the potential as polymer reinforcement in structural applications. This study initially investigated the tensile behaviour of single oil palm fibre and physical properties like diameter, moisture content, moisture absorption and density. Then, the tensile behaviour of natural fibre reinforced polymer composites as a function of fibre volume ratio, fibre length and fibre surface modification was investigated. Lastly, flexural behaviour of reinforced concrete beam strengthened with unidirectional oil palm fibre composite was tested and was compared with reinforced concrete beam strengthened with woven glass fibre composite and ordinary reinforced concrete beam. Oil palm fibre is light but high moisture content, high moisture absorption and large variance of cross section area. The fibre tensile properties are relatively low compare to the literature which may due to degradation problems. The stiffness of the composite is significantly improved when the fibre volume ratio increased. At 10% of fibre volume ratio, the modulus of elasticity is increased up to 150 % compare to neat resin. Higher aspect ratio yield higher tensile strength and modulus of elasticity of the composite. The effect of alkali treatment increases 10% of the tensile strength of the fibres. Oil palm fibre composite could be used as strengthening material for reinforced concrete beam by increasing the flexural strength and stiffness of the reinforced concrete beam while maintaining the ductility of the beams.
ABSTRAK

LIST OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION
1.1 General 1
1.2 Background and Rationale of the Project 2
1.3 Overall Objectives and Scope of the Study 5
1.3.1 Objectives of the Study 5
1.3.2 Scope of the Study 5
1.4 Summary 7

CHAPTER 2 LITERATURE REVIEW
2.1 General 8
2.2 Natural Fibre Reinforced Polymer Composition 8
2.2.1 Natural Fibres 8
2.2.1.1 Characteristic of Natural Fibres 13
2.2.1.2 Oil Palm Fibres 14
3.4.1.2 Resin 46
3.4.1.3 Closed Mould -Hand Lay System 47
3.4.2 Fabrication of Composite and Resin 50
3.4.3 Tensile Test 52
3.5 Property Test on Strengthening Reinforced Concrete Test
3.5.1 Specimen Preparation 58
3.5.1.1 Reinforced Concrete Beam 58
3.5.1.2 Reinforced Concrete Beam with Natural Fibre Composite Plate and Glass Fibre Composite Plate 62
3.5.2 Four Point Bending Test Setup 63
3.6 Conclusions 67

CHAPTER 4 RESULTS
4.1 General 68
4.2 Property Test on Natural Fibres 68
4.2.1 Physical Test 69
4.2.1.1 Fibre Length 69
4.2.1.2 Fibre Diameter 71
4.2.1.3 Moisture Content and Moisture Absorption 73
4.2.1.4 Fibre Density 75
4.2.2 Tensile Properties of Oil Palm Fibre 76
4.3 Tensile Properties of Composite and Resin 80
4.3.1 Tensile Properties of Natural Fibre Reinforced Composite
4.3.1.1 Fibre Volume Fraction 81
4.3.1.2 Fibre Length 86
4.3.1.3 Fibre Treatment 89
4.3.2 Tensile Properties of Glass Fibre Composite 92
4.3.3 Tensile Properties of Resin 93
4.4 Flexural Property of Strengthening Reinforced 94
Concrete Beam
4.4.1 Compressive Strength of Concrete
4.4.2 Control Specimens
4.4.3 Reinforced Concrete Beam strengthened with Glass Fibre Composite Plate
4.4.4 Reinforced Concrete Beam strengthened with Oil Palm Fibre Composite Plate

4.5 Conclusions

CHAPTER 5 ANALYSIS AND DISCUSSION
5.1 General
5.2 Characterization of Natural Fibres
5.2.1 Physical Properties
5.2.1.1 Fibre Length
5.2.1.2 Fibre Diameter
5.2.1.3 Moisture Content and Moisture Absorption
5.2.1.4 Fibre Density
5.2.2 Tensile Properties of Oil Palm Fibre
5.3 Characterization of Tensile Properties of Natural Fibre Reinforced Composite
5.3.1 Effect of Oil Palm Fibre in Reinforcing Polymer
5.3.2 Effect of Fibre Volume Fraction in Composite
5.3.3 Effect of Fibre Length in Composite
5.3.4 Effect of Fibre Treatment in Composite
5.4 Characterization of Flexural Behaviour of Strengthening Reinforced Concrete Beam
5.4.1 Deflection Behaviour and Ultimate Capacity of the Beams
5.4.2 Comparison between Theoretical Predictions and Experimental Results
5.5 Conclusions
<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>CONCLUSION AND RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>General</td>
</tr>
<tr>
<td>6.2</td>
<td>Physical and Tensile Properties of Natural Fibre</td>
</tr>
<tr>
<td>6.3</td>
<td>Tensile Properties of Oil Palm Fibre Reinforced Composite</td>
</tr>
<tr>
<td>6.4</td>
<td>Flexural Properties of Reinforced Concrete Beam Strengthened with Oil</td>
</tr>
<tr>
<td>6.5</td>
<td>Recommendations for Future Studies</td>
</tr>
</tbody>
</table>

REFERENCES 132
APPENDICES 134
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The density and the cost of various types of fibres in market</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical composition of various types of natural fibres</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Summarizes the basic properties of various natural fibres</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Representative properties of different types of resins</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic mechanical properties of Unsaturated Polyester</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Experimental Stress Strain Data for a variety of Glass/Epoxy Systems</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>The highest tensile strength that has been tested based on the types of natural fibres</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>The interfacial shear strength of natural fibres and matrix</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Basic requirement suggested by ASTM 3039 and BS EN ISO 527-5 for unidirectional tensile properties</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Proportion of Concrete Mixture of Grade 25</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Number of Oil Palm Fiber Length</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>The diameter of oil palm fibre</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Moisture Content of Pineapple Leaf Fibres and Oil Palm Fibres</td>
<td>74</td>
</tr>
<tr>
<td>4.4</td>
<td>Moisture Absorption of Pineapple Leaf Fibres and Oil Palm Fibres</td>
<td>75</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.5</td>
<td>Fibre density of Pineapple Leaf Fibres, Oil Palm Fibres and Glass Fibres</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Tensile Properties of oil palm fibre in various gauge length according to ASTM D 3379</td>
<td>78</td>
</tr>
<tr>
<td>4.7</td>
<td>Tensile properties of different oil palm fibre volume fraction composite</td>
<td>81</td>
</tr>
<tr>
<td>4.8</td>
<td>Tensile properties of different oil palm fibre length composite</td>
<td>85</td>
</tr>
<tr>
<td>4.9</td>
<td>Tensile properties of fibre composite as a function of alkali treatment hours</td>
<td>88</td>
</tr>
<tr>
<td>4.10</td>
<td>Tensile properties of woven glass fibre composite</td>
<td>91</td>
</tr>
<tr>
<td>4.11</td>
<td>Tensile properties of polyester resin</td>
<td>93</td>
</tr>
<tr>
<td>4.12</td>
<td>Compressive strength of concrete</td>
<td>94</td>
</tr>
<tr>
<td>5.1</td>
<td>Diameter of Oil Palm Fibre (Empty Fruit Brunch)</td>
<td>110</td>
</tr>
<tr>
<td>5.2</td>
<td>Moisture content of various fibres</td>
<td>111</td>
</tr>
<tr>
<td>5.3</td>
<td>Density of different type of natural fibres</td>
<td>112</td>
</tr>
<tr>
<td>5.4</td>
<td>Density of different type of natural fibres</td>
<td>113</td>
</tr>
<tr>
<td>5.5</td>
<td>First crack load and ultimate load of various beams</td>
<td>123</td>
</tr>
<tr>
<td>5.6</td>
<td>Theoretical and Experimental results of ultimate load in various beams</td>
<td>126</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The tensile strength of natural properties of natural fibre composites and other civil engineering materials</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Natural fibres based on their group</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydroxyl groups in cellulose monomer</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic representation of a fibre cell and the microfibrils</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Oil Palm Empty Fruit Branch</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Scanning electron micrographs of oil palm fibres</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>TGA and DTA curves of Alkali treated Oil Palm Empty Fruit Brunch Fibres</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>TGA and DTA curves of Oil Palm Empty Fruit Brunch Fibres</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Interior panelling in new Mercedez Benz automobiles</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Fibresit site office</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Empty Fruit Brunch of oil palm fibres</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Oil palm fibres is obtained in a rectangular bales. The fibres are curly, different direction and entangled</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Processed oil palm fibres after combing process</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Process flow of pineapple leaf fibres in laboratory</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Pineapple Leaf fibres before cut</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Smooth roller milling machine</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic of single fibre test specimen</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Setting time of polyester versus percentage of catalyst</td>
<td>47</td>
</tr>
</tbody>
</table>
3.9 Open steel mould is made and the product of open-mould system

3.10 A close-mould system and the product of close-mould natural fibre composite

3.11 Plan view and side view of the close mould system

3.12 The sequence of laying the fibres before composite is fabricated

3.13 Straight-sided specimen

3.14 A strain gage with base length L measures an average physical property related to the stress, σ_A

3.15 Straight sided specimen size and configuration

3.16 Straight sided specimen size of oil palm fibre composite

3.17 Extensometer with 50 mm gage length

3.18 DARTEC Universal Testing Machine, with a capacity of 250kN and hydraulic grips

3.19 Arrangement of reinforcement bar for the beam

3.20 Shear link and anchorage bar

3.21 Wooden formwork for reinforced concrete beam

3.22 Longitudinal and cross section of the reinforced beam

3.23 Steel mould is made to fabricate composite plate

3.24 The bottom surface of the concrete beam is roughened to provide better bonding

3.25 Four strain gauge are installed at top of the beam and side beam

3.26 Dummy plates PIF-11 are used when mounting the PIF-21 jig to the composite plate

3.27 Two PI-2-50 types of TML displacement transducers are installed at the middle of composite plate

3.28 Setup and Position of the instrumentions

3.29 Flexural test on control beam

4.1 Oil Palm Fibres and Pineapple Leaf Fibres after Oven-
Dried

4.2 Frequency of Oil Palm Fibre Length 71
4.3 Oil palm fibre length distribution curve 71
4.4 The image of oil palm fibre under 100x magnification 72
4.5 Defects of Oil Palm fibre, (a) branch (b) split (c) knob 72
4.6 Distribution of oil palm fibres diameter 73
4.7 Moisture absorption versus time of oil palm fibres and pineapple leaf fibres 75
4.8 Typical load versus elongation of single fibre tensile test of oil palm fibre 76
4.9 Relationships of apparent compliance versus fibre gauge length from single fibre testing test 77
4.10 Typical stress versus strain of single fibre tensile test of oil palm fibre 79
4.11 The appearance of different fibre volume fraction composite 80
4.12 Bar chart of ultimate tensile strength versus fibre volume ratio 82
4.13 Bar chart of strain at break versus fibre volume ratio 82
4.14 Bar chart of modulus of elasticity versus fibre volume ratio 83
4.15 Stress strain curve of different volume fraction of oil palm fibre composite 84
4.16 Typical failure pattern of unidirectional composites under longitudinal tension, a) fracture near tab, b) and c) fracture in gage length 84
4.17 Bar chart of ultimate tensile strength versus fibre length 85
4.18 Bar chart of strain at break versus fibre length 86
4.19 Bar chart of modulus of elasticity versus fibre length 87
4.20 Stress strain curve of different fibre length of oil palm fibre composite 87
4.21 Bar chart of ultimate tensile strength versus fibre 89
length in alkali treatment study

4.22 Bar chart of strain at break versus fibre length in alkali treatment study 89

4.23 Bar chart of modulus of elasticity versus fibre length in alkali treatment study 90

4.24 Stress strain curve of oil palm fibre composite as a function of treatment time 90

4.25 Typical stress strain curve of woven glass fibre reinforced polymer composite 93

4.26 Typical stress strain curve of polyester resin 93

4.27 Longitudinal cracks were found on tested concrete cubes at 28 days 94

4.28 Load-displacement curve of control beam 95

4.29 Large flexural crack was found under the applied load after the control beam failed 96

4.30 Flexural cracks were observed in control beam 96

4.31 Longitudinal strain in the mid span cross section control beam under various applied load 97

4.32 Load versus compressive strain of the concrete beam at the top surface 98

4.33 Load-displacement curve of RC-GFRP beam 99

4.34 Initial crack was found at 12kN of applied load in GFRP-RC beam 99

4.35 Flexural cracks were observed in GFRP-RC beam 100

4.36 GFRP plate end interfacial debonding was observed after ultimate load 100

4.37 Longitudinal strain in the mid span cross section RC-GFRP beam under various applied load 101

4.38 Load versus compressive strain of GFRP-RC concrete beam at the top surface 102

4.39 Load versus tensile strain of GFRP composite plate at the bottom of the beam 102

4.40 Load-displacement curve of RC-OPFRP beam 104
4.41 Fracture of oil palm fibre reinforced polymer composite at ultimate tensile strength 104
4.42 Flexural cracks were observed in OPFRP-RC beam 105
4.43 Longitudinal strain in the mid span cross section RC-OPFRP beam under various applied load 105
4.44 Load versus tensile strain of GFRP composite plate at the bottom of the beam 106

5.1 Lumen was found in the cross section of oil palm fibre 110
5.2 a) Stress-strain curve of treated and untreated oil palm fibre reported by M.S.Sreekala and b) Stress-strain curve of untreated oil palm fibre reported by Liew 114
5.3 Stress-strain curve of oil palm fibre, oil palm fibre reinforced polymer composite and resin 115
5.4 Sequence of micromechanics failure in composite 116
5.5 The effect of tensile properties of oil palm fibre reinforced polymer composite as a function of fibre volume ratio 117
5.6 Comparison of ultimate tensile strength of composite of experimental results and theoretical model as a function of fibre volume ratio 119
5.7 Comparison of ultimate tensile strength of composite of experimental results and theoretical model as a function of fibre volume ratio 119
5.8 The effect of tensile properties of oil palm fibre reinforced polymer composite as a function of fibre length 120
5.9 Stresses in a discontinuous fibre 121
5.10 The effect of tensile properties of oil palm fibre reinforced polymer composite as a function of treatment hour 122
5.11 Load versus displacement of the beams 124
LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>EQUATION NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/1</td>
<td>Average longitudinal stress</td>
<td>118</td>
</tr>
<tr>
<td>E/2</td>
<td>Average longitudinal modulus</td>
<td>118</td>
</tr>
<tr>
<td>E/3</td>
<td>Alkaline treatment reactions</td>
<td>122</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APP. NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/1</td>
<td>Calculation of Strengthening Beam OPFRP-RC Capacity</td>
<td>125</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General

Natural fibres can be defined as slender threads created by nature. Comparatively, synthetic fibres are created by humans from minerals. Synthetic fibres are extensively used in advanced composites like airplanes, sports gadgets, automotive and infrastructure due to high strength and high performance when combine with plastic material. However, synthetic fibres like glass fibre are usually high cost compare to conventional materials like wood, steel and concrete which limit the use of synthetic fibres in advance applications only. Unlike the synthetic fibres, natural fibres are cheap and available in large quantity and yet environmental friendly\(^1\).

In the past, natural fibres are used in early human civilization in fabric applications. High strength natural fibres like jute, cotton, silk and kenaf are used extensively and directly in one-dimensional products like lines, ropes and cloths. Others natural fibres like oil palm fibres, banana leaf fibres, and rice stalks fibres are residual agriculture product. They are usually disposed into land fill or disposed by open burning.
Environmental issues arise when these materials are in large quantities. Landfill method becomes not economical whilst open burning results air pollution and global warming.

Until recent decade, there is an increasing interest on natural fibres reinforced polymer. The potential of natural fibres replacing synthetic fibres in composite is possible\(^2\). In general, natural fibres offer high specific properties, low cost, non abrasive, readily available and environmental friendly where no synthetic fibres can surpass these advantages. These advantages attract scientists and technologists especially automobile industry to study on the behaviour of the natural fibres and the characteristic of the natural fibre reinforced composites. However, certain drawbacks such as incompatibility with hydrophobic polymer matrix, the tendency to form aggregates during processing, poor resistance to moisture greatly reduce the potential of natural fibres to be used as reinforcement in polymer\(^2\). Moreover, no literature is made on the potential of natural fibre composites in structural application. Therefore, a detail study on the characteristic of natural fibre composites is required to investigate the potential of natural fibre composites in structural use.

1.2 Background and Rationale of the Project

Natural fibre reinforced polymer consist of resin as a matrix and natural fibres as reinforcement. Natural fibres are formed in a very complex system and there is an enormous amount of variability in fibre properties, unlike synthetic fibres which is homogenous and constant in physical and mechanical properties. The variability of natural fibres depends upon the origin of the fibres, the quality of plant and location\(^3\). Hence, it is no doubt that the challenges of the natural fibres use as reinforcement in composite are greater than synthetic fibres.

In the past, the development of fibre reinforced polymeric materials in civil engineering increased rapidly where these materials in civil engineering applications are divided into two categories, structural and non structural. Structural applications are designed to sustain some degree of load like bridge, truss, I-beam, column, repair and
rehabilitation applications. While non structural applications are non load bearing and they are designed based on quality guidelines and aesthetic considerations. In Malaysia, the utilizations of fibre reinforced polymeric materials in structural applications are still very low. One of the factors is the high cost of raw materials where mostly are imported from China, Japan, Europe and the United State of America. Can local and low cost natural fibres substitute synthetic fibres in reinforced polymeric materials for structural applications?

Materials in structural applications must have sufficient mechanical strength and durability to the surrounding environments. Figure 1 shows the basic mechanical properties like tensile strength of the natural fibres reinforced composites are compared with the most common materials like FRP, steel, wood, and concrete. Some of the natural reinforced composites materials (like curaua fibres) are comparable to wood, steel and FRP. However, the overall average tensile strength of the natural fibre reinforced composites falls in the range of hardwood and softwood. Therefore, natural fibre reinforced composites can replaced conventional material like timber and wood in structural applications.

The wide variety of natural fibres exhibit different types of behaviour and characteristic. To limit the scope, oil palm fibres and pineapple leaf fibres are employed in this study because it can be obtained locally.

Malaysia, the world’s largest palm oil producer, produces more than 15.8 million tonnes of crude palm oil every year. The oil palm fibres are usually treated as residue product and cause environmental problems when disposing them. Oil palm fibres can be extracted from empty fruit bunch and its coirs. Every single empty fruit branch of oil palm yields 400 grams of oil palm fibre and weight of every fresh fruit bunch of oil palm is around 25 kg. About 8.8 million tonnes of oil palm fibres can be produced every year and yet the mesocarp oil palm fibres are not taking into account. The enormous quantity of oil palm fibres is usually disposed by two methods, open burning or land fill.
Currently, reports have proved that treated oil palm fibres successful act as reinforcement in composites and durable to environmental attacks.

Pineapple leaf fibre is another natural fibre that can be obtained locally and exhibits excellent mechanical properties. The pineapple leaf fibre consists of high cellulose material and is very often associates with excellent mechanical properties. L.Uma Devi et al. study on pineapple leaf fibre composites and the composite exhibit excellent mechanical properties in tensile strength, flexural strength and impact strength. He concluded that the pineapple leaf fibres are good in reinforcing and suitable to be structural applications.

* Compression strength is compared.

Figure 1.1: The tensile strength of natural properties of natural fibre composites and other civil engineering materials.
1.3 Overall Objectives and Scope of the Study

1.3.1 Objectives of the study:

The main objectives of the study are:

1) To characterise the physical and mechanical properties of natural fibre - oil palm fibres.

2) To characterise the tensile properties of unidirectional oil palm fibre composites as a function of fibre volume ratio, fibre length, fibre surface modification.

3) To compare the mechanical behaviour of reinforced concrete beam strengthened with unidirectional oil palm fibre composite, reinforced concrete beam strengthened with woven glass fibre composite and ordinary reinforced concrete beam.

1.3.2 Scope of the study:

The scope of study is established to achieve the objectives and this study will be mainly concentrated on experimental works. To limit the scope, only oil palm fibres and pineapple leaf fibres are employed as natural fibres. The fibres are obtained in fresh condition and require the extraction process.

Synolac 3317AW, unsaturated polyester resin purchased from Cray Valley Company is employed in this study for matrix system. All natural fibre reinforced polymeric material is fabricated using the closed mould-hand lay up system.

All testing methods and procedures are specified according to British Standard and American Society Testing Method.

Firstly, the physical and mechanical properties of oil palm fibres are determined. The physical properties tests include fibre length, fibre diameter, moisture content,
moisture absorption and fibre density. Only tensile properties are interested in determining mechanical properties. The tensile properties include tensile strength, strain and modulus elasticity of oil palm fibres.

Due to high efficiency in contributing tensile properties, only unidirectional oil palm fibres composites are interested and tested. Three main factors influence the desired mechanical properties of unidirectional oil palm fibre composites, namely fibre volume fraction, fibre aspect ratio and interfacial shear strength. Fibre volume fraction influence the tensile properties directly, where more fibres are used, the tensile properties are improved. However, the tensile properties may start to decline after the optimum point. The tensile properties are also affected by fibre aspect ratio where high fibre aspect ratio composite usually improve the tensile properties of the composite. Another important factor is interfacial shear strength of oil palm fibres which can be improved by using alkali treatment.

Different fibre volume fraction, fibre aspect ratio and interfacial shear strength of oil palm fibre composites are fabricated and tested under tensile force to determine tensile properties. Comparisons are made and the desired tensile properties of oil palm fibre are used in the structural application.

In this study, the desired tensile properties are used as strengthening material in reinforced concrete beam. A total of three 2000 mm x 150 mm x 250 mm reinforced concrete beams are fabricated. The first beam maintain as control beam while the rest of the beams are strengthened with unidirectional oil palm fibre composite plate and woven glass fibre composite plate. Similar fibre volume fraction is employed for both strengthening material. The mechanical behaviours of the beams are analysis and discussed.
1.4 Summary

The development of natural fibre composite for structural application is still at infancy stage. Due to the attractive properties like high specific strength and high specific modulus, natural fibre composite rapidly gains popularity in the use of automobile applications and structural applications. Compared to synthetic fibre composite, natural fibres are low cost and abundant in agro-based countries. The use of natural fibres in composites can reduce the impact of environmental issues.

This study is a preliminary stage to make natural fibre composite as structural application where only mechanical properties is focused. In fact, durability of this new material in structural application is equally important. The use of natural fibre composite in structural application is possible but requires more study and development in future.
References

5. Malaysia Palm Oil Board

