Adriansyah, Andi and H. M. Amin, Shamsudin (2006) Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight. Regional Postgraduate Conference on Engineering and Science . pp. 247-252.
|
PDF
707kB |
Abstract
The particle swarm optimization (PSO) is an algorithm for finding optimal regions of complex search space through interaction of individuals in a population of particles. Search is conducted by moving particles in the space. Some methods area attempted to improve performance of PSO since is founded, including linearly decreasing inertia weight. The present paper proposes a new variation of PSO model where inertia weight is sigmoid decreasing, called as Sigmoid Decreasing Inertia Weight. Performances of the PSO with a SDIW are studied analytically and empirically. The exploration–exploitation tradeoff is discussed and illustrated, as well. Four different benchmark functions with asymmetric initial range settings are selected as testing functions. The experimental results illustrate the advantage of SDIW that may improve PSO performance significantly.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | particle swarm optimization, inertia weight, sigmoid decreasing inertia weight |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Electrical Engineering |
ID Code: | 1690 |
Deposited By: | Dr Zaharuddin Mohamed |
Deposited On: | 13 Mar 2007 02:04 |
Last Modified: | 19 May 2011 04:55 |
Repository Staff Only: item control page