OIL FATE AND SLICK TRAJECTORY PREDICTION FOR MARINE OIL POLLUTION CONTROL STRATEGIES

MOHAMMED ALI ABDULLAH AL-MUHANDES

UNIVERSITI TEKNOLOGI MALAYSIA
OIL FATE AND SLICK TRAJECTORY PREDICTION FOR MARINE OIL
POLLUTION CONTROL STRATEGIES

MOHAMMED ALI ABDULLAH AL-MUHANDES

A thesis submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Engineering (Marine Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

MARCH 2012
Dedicated to father, mother, wife, siblings, children and dear friends and lecturers
ACKNOWLEDGEMENT

IN THE NAME OF ALLAH S.W.T, THE MOST GRACIOUS THE MOST MERCIFUL

Thanks to ALLAH for giving the strength to complete this thesis in time. During preparation this thesis, I am greatly indebted to many individuals for their assistance. In particular, my supervisor Associate Professor Dr. Zamani Bin Ahmad and co. supervisor Dr. Jaswar who helped and encouraged me to complete this thesis. They also gave me a lot of impetus guidance throughout my thesis. My appreciation goes also to everybody in maritime affairs authority in Yemen to mitigate the difficulties in front of my way. Finally, most importantly I would like to thank my family and relatives for their financial and moral support.
ABSTRACT

The impact of oil pollution is significant and its effects can be seen in different marine related aspects including fisheries, tourism and coastal industries. Hence, the choice of the most effective oil pollution combating strategy is very important to minimize the effect of oil spills on the environmental and socio-economic activities. An efficient strategy includes the prediction of oil fate and slick trajectory to determine which shoreline will be affected and which combating technique is most suitable. In this research, a model describing the selection of oil pollution combating strategy has been developed. Software simulations and mathematical relationships were used to predict the oil fate and slick trajectory. For oil fate, ADIOS2 program was used to predict evaporation, dispersion and change in viscosity processes and mathematical relationships were used to predict spreading and emulsification processes respectively. Slick trajectory calculator program was used to predict the movement of oil. A case study has been performed on a simulated oil pollution scenario off the South West coast of Johor, Malaysia. The type of oil was Arabian Heavy, Amoco with API 28 spilled at 103° 28’ 50 E and 1° 07’ 12 N. The model predicted that nine hours after the time of spill, the weathering processes such as spreading, evaporation, dispersion, emulsification and viscosity were 637748 m², 104 m³, 3.7 m³, 470 m³ and 60 cSt respectively and the trajectory with overall bearing of 26.3° towards a sensitive shoreline with Tanjung Pelepas Port, Tanjung Bin Power Plant and mangrove areas. The model proposed the use of the combination of oil pollution combating equipment including booms, skimmers, pumps, manual and motorized equipment, in addition to chemical dispersant and placement of such equipment. Using the selected strategy model predicted that the pollutant would be effectively controlled.
Impak pencemaran tumpahan minyak memberi kesan yang sangat besar kepada industri berkaitan maritim termasuk perikanan, pelancongan dan industri persisiran pantai. Dengan itu pilihan strategi yang berkesan bagi mengatasi masalah pencemaran tumpahan minyak adalah penting untuk meminimumkan kesannya terhadap alam sekitar dan aktiviti sosio-ekonomi. Strategi yang cekap termasuklah menentukan ciri-ciri tumpahan dan unjuran arah aliran pencemaran bagi mengetahui kawasan persisiran yang akan terjejas dan kaedah penyelesaian yang bersesuaian. Di dalam penyelidikan ini, sebuah model yang menerangkan cara pemilihan strategi mengatasi tumpahan minyak telah dibangunkan. Simulasi menggunakan perisian komputer dan secara persamaan matematik telah digunakan untuk meramalkan ciri-ciri dan arah aliran tumpahan minyak. Perisian ADIOS2 digunakan untuk meramal proses-proses pengewapan, penyebaran dan perubahan kelikatan dan persamaan matematik digunakan untuk meramal penyerakan dan proses emulsifikasi. Sebuah program pengiraan unjuran pergerakan tumpahan minyak digunakan untuk menentukan pergerakan minyak. Kajian kes telah dijalankan dengan melakukan simulasi tumpahan minyak di kawasan pantai Barat Daya Johor dengan menggunakan jenis minyak Arabian Heavy, Amoco (API 28) pada koordinat 103° 28’ 50” T dan 1° 07’ 12” U. Model meramalkan bahawa selepas sembilan jam kondisi penyerakan, pengewapan, penyebaran, emulsifikasi dan kelikatan tumpahan minyak adalah masing-masing 637748 m², 104 m³, 3.7 m³, 470 m³ dan 60 cSt dengan unjuran kedudukan 26.3° menuju persisiran di mana terdapat Pelabuhan Tanjung Pelepas, Janakuasa Tanjung Bin kawasan hutan bakau. Model mencadangkan penggunaan kaedah kombinasi peralatan untuk mengatasi masalah tumpahan minyak seperti boom, penapis minyak, pam, peralatan manual dan peralatan yang menggunakan kuasa sebagai tambahan kepada tambahan bahan kimia penyebaran yang berkenaan dan penempatan peralatan-eralatan tersebut. Dengan strategi yang dipilih model meramalkan tumpahan minyak akan dapat dikawal dengan berkesan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research background 1
1.2 Problem statement 3
1.3 Objectives 4
1.4 Scope of project 5
1.5 Organization of the thesis 5

2 LITERATURE REVIEW

2.1 Introduction 7
2.2 Oil classification 8
 2.2.1 Chemical classification 8
 2.2.1.1 Low molecular weight hydrocarbon 8
 2.2.1.2 Medium molecular weight hydrocarbon 9
 2.2.1.3 High molecular weight hydrocarbon 9
2.2.2 Physical classification
 2.2.2.1 Group 1 10
 2.2.2.2 Group 2 11
 2.2.2.3 Group 3 11
 2.2.2.4 Group 4 12

2.3 International regulations
 2.3.1 Protocol of 1978 (MARPOL 73/78) Annex I 13
 2.3.2 OPRC convention (1990) 13
 2.3.3 Marine pollution control act (2001) 14
 2.3.4 Spill pollution contingency convention (2010) 14
 2.3.5 International oil pollution compensation funds (2005) 14

2.4 Oil fate and trajectory
 2.4.1 Oil fate 15
 2.4.1.1 Spreading 16
 2.4.1.2 Evaporation 17
 2.4.1.3 Dispersion 19
 2.4.1.4 Emulsification 20
 2.4.2 Oil slick trajectory 21
 2.4.3 Aerial surveillance 23

2.5 Types of shorelines
 2.5.1 Types of shorelines according to their activities 27
 2.5.1.1 Environmental activities 27
 2.5.1.2 Fishing, shellfish and aquaculture activities 27
 2.5.1.3 Socio-economic activities 28
 2.5.2 Types of shorelines according to beaches 28

2.6 Contingency plan and incident command system
 2.6.1 Contingency plan 30
 2.6.2 Incident command system 35
 2.6.2.1 Levels of oil spill response organizations 36
 2.6.2.2 Responsibilities 37

2.7 View on strategies and in hand equipment
 2.7.1 Types of response strategies 40
 2.7.1.1 Offshore recovery strategy 40
 2.7.1.2 Dispersion strategy 41
2.7.1.3 In-situ burning strategy 44
2.7.1.4 Shoreline clean up strategy 45
2.7.1.5 Shoreline protection strategy 47
2.7.2 Examples of major spills and response strategies 49
2.7.2.1 Exxon Valdez 49
2.7.2.2 Sea empress 50
2.7.3 Examples of choosing strategy models 52
2.7.3.1 Flinders ports choosing strategy model 52
2.7.3.2 O’connoli choosing strategy model 54
2.7.3.3 The Cantabria choosing strategy model 55
2.7.3.4 Comparison among choosing strategy models 56

3 RESEARCH METHODOLOGY

3.1 Introduction 58
3.2 Research methodology flow chart 59
3.3 Prediction of oil pollutants fate 60
 3.3.1 Spreading 60
 3.3.2 Evaporation 61
 3.3.3 Dispersion 62
 3.3.4 Viscosity 63
 3.3.5 Emulsification 64
3.4 The predicting of oil slick trajectory 65
3.5 Sensitivity of shorelines and priority for protection 66
 3.5.1 Ranking of resources 66
 3.5.1.1 Ranking of biological resources 66
 3.5.1.2 Ranking of human use features 67
 3.5.1.3 Priority ranking of shorelines 68
3.6 Establishment matrix of equipments and useful techniques 69
3.7 Determination of control strategies 70
 3.7.1 Introduction 70
 3.7.2 Offshore recovery strategy 73
 3.7.3 Offshore dispersion strategy 74
3.7.4 Shoreline clean-up strategy 75
3.7.5 Shoreline protection strategy 76
3.8 Case of study 78

4 RESULTS

4.1 Introduction 79
4.2 Results of oil fate prediction 79
 4.2.1 Spreading 79
 4.2.2 Evaporation 82
 4.2.3 Dispersion 83
 4.2.4 Viscosity 84
 4.2.5 Emulsification 85
4.3 Results of oil slick trajectory prediction 86
4.4 Results of shoreline analysis and protection priority 91
 4.4.1 Tanjung Pelepas Port 91
 4.4.2 Tanjung Bin Power Plant 92
 4.4.3 Mangroves 93
 4.4.4 Puteri Harbour 94
4.5 Results of Equipment and solution techniques 95
 4.5.1 In-hand booms 96
 4.5.1.1 Types of booms and their characteristics 96
 4.5.1.2 Specifications of booms 97
 4.5.2 In-hand skimmers 99
 4.5.2.1 Types skimmer and their characteristics 99
 4.5.2.2 Specifications of in-hand skimmers 100
 4.5.3 In-hand pumps 102
 4.5.3.1 Types of pumps and their characteristic 102
 4.5.3.2 Specifications of pumps 103
 4.5.4 In-hand sorbent materials 105
 4.5.4.1 Types of sorbent material and their characteristics 105
 4.5.4.2 Specifications of sorbent materials 106
4.5.5 In-hand dispersion system

4.5.5.1 Characteristics of dispersion usage
4.5.5.2 Specifications of spray system

4.5.6 Data of additional in-hand equipment

4.5.6.1 Vessels
4.5.6.2 Storage tanks
4.5.6.3 Manual and motorized equipments

4.6 Results of demonstrating combating strategies

4.6.1 Offshore recovery strategy

4.6.1.1 Stage one
4.6.1.2 Stage two

4.6.2 Offshore dispersion strategy

5.6.2.1 Stage one
5.6.2.2 Stage two

4.6.3 Shoreline protection strategy

4.6.3.1 Zone one
4.6.3.2 Zone two

4.6.4 Shoreline recovery and clean-up

4.6.5 Result of combating based on prediction

5 DISCUSSION

5.1 Introduction

5.2 Effect of oil fate prediction

5.2.1 Spreading
5.2.2 Evaporation
5.2.3 Dispersion
5.2.4 Viscosity
5.2.5 Emulsification

5.3 Effect of oil slick trajectory prediction

5.4 Effect of shoreline analysis and protection priority

5.4.1 Tanjung Pelepas Port
5.4.2 Tanjung Bin Power Plant
5.4.3 Mangroves
5.4.4 Puteri Harbour
5.5 Effect of equipment and solution techniques
 5.5.1 In-hand booms
 5.5.2 In-hand skimmers
 5.5.3 In-hand pumps
 5.5.4 In-hand sorbent materials
 5.5.5 In-hand dispersion system
 5.5.6 Additional data of in-hand equipment
5.6 The effectiveness of combating response strategies
 5.6.1 Offshore recovery strategy
 5.6.2 Offshore dispersion strategy
 5.6.3 Protection strategy for sensitive areas
 5.6.4 Shoreline recovery and clean-up
 5.6.5 Reward of combating strategy based on oil fate and slick trajectory

6 CONCLUSION AND RECOMMENDATION
 6.1 Conclusion
 6.2 Recommendation

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The main processes of oil on water</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Fate processes over time</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>ADIOS2 software</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>The percentage of emulsified oil within time</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Oil slick trajectory software</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Wind speed effect on the oil slick</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Way of helicopter approaching an oil tanker</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Oil on water quantification calculator</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Environmental and economical types of shorelines</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Chain of contingency plans</td>
<td>31</td>
</tr>
<tr>
<td>2.11</td>
<td>Tiering levels of oil spills</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>Oil Spill Response Organization for Small Spill</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>Oil Spill Response Organization for Medium Spill</td>
<td>36</td>
</tr>
<tr>
<td>2.14</td>
<td>Oil spill response organization for large spill</td>
<td>37</td>
</tr>
<tr>
<td>2.15</td>
<td>Mechanical clean-up recommendation</td>
<td>40</td>
</tr>
<tr>
<td>2.16</td>
<td>Dispersion and emulsification of oil in water</td>
<td>42</td>
</tr>
<tr>
<td>2.17</td>
<td>Range of viscosity where dispersant application</td>
<td>43</td>
</tr>
<tr>
<td>2.18</td>
<td>Spray system and offshore dispersion strategy</td>
<td>43</td>
</tr>
<tr>
<td>2.19</td>
<td>Typical boom operation for in-situ burning</td>
<td>44</td>
</tr>
<tr>
<td>2.20</td>
<td>Different types of shoreline clean up techniques</td>
<td>45</td>
</tr>
<tr>
<td>2.21</td>
<td>Shoreline recovery techniques</td>
<td>47</td>
</tr>
<tr>
<td>2.22</td>
<td>Terminals/Harbours booms</td>
<td>48</td>
</tr>
<tr>
<td>2.23</td>
<td>Boom deployment calculator software</td>
<td>48</td>
</tr>
<tr>
<td>2.24</td>
<td>Flinders Ports choosing strategies model</td>
<td>53</td>
</tr>
</tbody>
</table>
2.25 O’connoli choosing strategies model
2.26 Cantabria choosing strategies model
3.1 Flow chart of research methodology
3.2 Assessment procedures and offshore response strategies
3.3 Shoreline clean up response strategy
3.4 Protection response strategy
4.1 Prediction of oil spill elliptical diameters from 7 a.m. to 4 p.m.
4.2 Prediction of changing of oil slick area from 7 a.m. to 4 p.m.
4.3 Predicted quantity of evaporated oil
4.4 Predicted quantity of naturally dispersed oil
4.5 Predicted quantity of remaining oil after dispersion and evaporation
4.6 Predicted change of density of spilled oil
4.7 Predicted change of viscosity of spilled oil
4.8 Predicted the ratio of water in oil and its relation to wind speed
4.9 Predicted quantity of oil and oil with emulsion within 9 hours
4.10 Predicted output data of oil slick position at 8 am
4.11 Predicted output data of oil slick position at 11 am
4.12 Predicted output data of oil slick position from 11 am to 12 noon
4.13 Predicted output data of oil slick position at 2 pm
4.14 Predicted output data of oil slick position from 2 to 3 pm
4.15 Predicted output data of oil slick position from 3 to 4 pm
4.16 Predicted output data of oil slick position at 4 pm
4.17 Predicted trajectory line pointed on each hour
4.18 Predicted trajectory line by using Google earth
4.19 Sensitive areas south west of Johor
4.20 Mangrove forest south west Johor
4.21 Protection Strategy for zone 1
4.22 Output of Booms 1 and 2 at zone 1
4.23 Output of Boom 3 at zone 1
4.24 Output of Boom 4 at zone 1
4.25 Staggered chevron and exclusion booming in Zone 2
4.26 Output of the Boom 1 of the second zone equal 70 m
4.27 Output of Boom 2 of the second zone equal 20 m
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.28</td>
<td>General budget after offshore combating</td>
<td>126</td>
</tr>
<tr>
<td>4.29</td>
<td>Quantity of recovered oil resulted of offshore recovery</td>
<td>127</td>
</tr>
<tr>
<td>4.30</td>
<td>Quantity of oil resulted of offshore chemically dispersed oil</td>
<td>127</td>
</tr>
<tr>
<td>4.31</td>
<td>Quantity of remained oil after offshore recovery and dispersion</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>strategies</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical properties of group 1 oils</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Physical properties of group 2</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Physical properties of group 3</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Physical properties of group 4</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Thickness of typical colors of oil on water</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Types of beaches, oil accumulation and duration of spill</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison of combating strategy flow charts</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Level vulnerability of biological resources</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Ranking of human use features</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Ranking of shorelines</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Techniques and their equipments</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Suitability of skimmers as offshore recovery strategy</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Suitability usage of pumps as offshore recovery strategy</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>Suitability of dispersants as offshore dispersion strategy</td>
<td>74</td>
</tr>
<tr>
<td>3.8</td>
<td>Shoreline clean up strategy</td>
<td>76</td>
</tr>
<tr>
<td>3.9</td>
<td>Techniques of shoreline protection strategy</td>
<td>77</td>
</tr>
<tr>
<td>3.10</td>
<td>Input data of wind and sea current</td>
<td>78</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>Wind speed and oil volume</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary report of slick trajectory</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Types of booms and their characteristics</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Specifications of Fence boom</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>Specifications of Air inflated boom</td>
<td>98</td>
</tr>
<tr>
<td>4.6</td>
<td>specifications of shore sealing boom</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Types of skimmers and their characteristics and mechanism</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Specifications of oleophilic skimmer</td>
<td>100</td>
</tr>
<tr>
<td>4.9</td>
<td>Specifications of offshore weir skimmer</td>
<td>100</td>
</tr>
<tr>
<td>4.10</td>
<td>Specifications of shoreline and harbour weir skimmer</td>
<td>101</td>
</tr>
<tr>
<td>4.11</td>
<td>Specifications of vacuum skimmers</td>
<td>101</td>
</tr>
<tr>
<td>4.12</td>
<td>Specifications of mechanical skimmer</td>
<td>102</td>
</tr>
<tr>
<td>4.13</td>
<td>Types of pump and their characteristics</td>
<td>103</td>
</tr>
<tr>
<td>4.14</td>
<td>Specifications of Peristaltic pump</td>
<td>104</td>
</tr>
<tr>
<td>4.15</td>
<td>Specifications of diaphragm pump</td>
<td>104</td>
</tr>
<tr>
<td>4.16</td>
<td>Specifications of centrifugal pump</td>
<td>105</td>
</tr>
<tr>
<td>4.17</td>
<td>Types of sorbent materials and their characteristics</td>
<td>106</td>
</tr>
<tr>
<td>4.18</td>
<td>In-hand sorbent material and their capacity</td>
<td>106</td>
</tr>
<tr>
<td>4.19</td>
<td>Advantages and limitations of using chemical dispersant</td>
<td>107</td>
</tr>
<tr>
<td>4.20</td>
<td>Specifications of in hand spray system</td>
<td>108</td>
</tr>
<tr>
<td>4.21</td>
<td>Specifications of oil pollution control vessel</td>
<td>109</td>
</tr>
<tr>
<td>4.22</td>
<td>In-hand equipment to perform offshore recovery</td>
<td>112</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.23</td>
<td>The first step of offshore recovery strategy</td>
<td>113</td>
</tr>
<tr>
<td>4.24</td>
<td>The second step of offshore recovery strategy</td>
<td>114</td>
</tr>
<tr>
<td>4.25</td>
<td>Combating equipment and effective work</td>
<td>115</td>
</tr>
<tr>
<td>4.26</td>
<td>The first step of offshore dispersion strategy</td>
<td>116</td>
</tr>
<tr>
<td>4.27</td>
<td>The second step of offshore dispersion strategy</td>
<td>117</td>
</tr>
<tr>
<td>4.28</td>
<td>Effective deployment in Zone one</td>
<td>118</td>
</tr>
<tr>
<td>4.29</td>
<td>Suitable used technique in Zone 1</td>
<td>121</td>
</tr>
<tr>
<td>4.30</td>
<td>Effective deployment in Zone two</td>
<td>121</td>
</tr>
<tr>
<td>4.31</td>
<td>Suitable used technique in Zone two</td>
<td>123</td>
</tr>
<tr>
<td>4.32</td>
<td>Quantity of combated oil as resulted of offshore operations</td>
<td>126</td>
</tr>
<tr>
<td>5.1</td>
<td>Result of slick trajectory until 10 am</td>
<td>134</td>
</tr>
<tr>
<td>5.2</td>
<td>Result of slick trajectory until 4 pm</td>
<td>135</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

AASTMT - Arab Academy for Science, Technology and Maritime Transportation
ACP - Australia Contingency Plan
ITOPF - International Tankers Owners Pollution Federation
NEEB - Net Environmental and Economical Benefit
IPIECA - International Petroleum
NRC - National Research Council
TAP - Trajectory Analysis Planner
API - American Petroleum Institute
MARPOL - Marine Pollution
MEPC - Marine Environment Protection Convention
OPRC - Oil Pollution Response and preparedness Cooperation
DOE - Department of Environment
SPCC - Spill Pollution Contingency Convention
IOPC - International Oil Pollution Compensation
NOAA - National Oceanic and Atmospheric Administration
ADIOS - Automated Data Inquiry Oil Spill
PERSGA - Protection of Environment at Red Sea and Gulf of Aden
OSTC - Oil Spill Training Company
EARL - East Asia Response Limited
ICS - Incident Command System
IC - Incident Commander
SSW - South South West
NNE - North North East
LIST OF SYMBOLS

A - constants derived from distillation data
A_S - silver/sheen color area
A_R - rainbow color area
A_B/b - black/brown color area
A_B/O - brown/orange color area
B - constants derived from distillation data
C_3 - the constant viscosity equal to 0.7 for heavy fuel oil and 0.25 for light oil
C_{dis} - an experimentally determined parameter
D_a - the fraction of sea surface dispersed per hour
D_b - the fraction of the dispersed oil not returning to the slick
D_e - dispersion of wave energy per unit surface area
d_{max} - maximum droplet size 70 microns
d_{min} - minimum droplet size 5 microns
F_{bw} - fraction of breaking waves per wave period per unit area
F_E - volume fraction evaporated
g - gravitational acceleration
h - average thickness of oil
H_{rms} - root-mean wave height in meters, assumed to be related to the spectrally based significant wave height
H(t) - the thickness of slick as a function of time
K_2 - mass transfer coefficient for evaporation
K^o - reference mass transport coefficient defined at 1 m/s
L_{max} - the length of the major axes of ellipse
L_{min} - the length of the minor axes of ellipse
N - speed of boat or aircraft
N(δ) - the number of oil droplets per unit volume of water per droplet diameter
P\textsubscript{1} - vapor pressure of the ith Pseudo component
Q\textsubscript{dis} - application rate of dispersant
R\textsubscript{dis} - desired dispersant-to-oil volume ratio
R - gas constant = 8.3144 j/k, mole
S - swath width on the water surface
s\textsubscript{t} - oil-water interfacial tension (dyne/m)
T - ambient temperature
t - time
T\textsubscript{0} - initial boiling point at F\textsubscript{E} of zero K
T\textsubscript{G} - gradient of boiling point, T\textsubscript{B} and F\textsubscript{E} line (K)
U\textsubscript{w} - the wind speed
V\textsubscript{e} - water content of the emulsion
V\textsubscript{dis} - application rate of dispersant
V\textsubscript{o/w} - volume of oil entrained per unit volume of water
V\textsubscript{oil} - the total volume of an oil spill
V\textsubscript{1} - molar volume of the ith Pseudo component (m3/mole)
\textbf{\bar{V}}\textsubscript{c} - depth-averaged current velocity
V\textsubscript{0} - initial volume of spilled oil
\textbf{\bar{V}}\textsubscript{w} - wind velocity at 10 m above the mean seawater surface
X\textsubscript{1}(t) - downwind dimension
Y(t) - fraction of water in emulsion as a function of time
\theta - jet angle with respect to x-axis
\mu - viscosity (cp)
\rho\textsubscript{0} - the density of oil
\rho\textsubscript{w} - the density of water
\alpha\textsubscript{c} - current drift factor (~1.1)
\alpha\textsubscript{w} - wind drift factor (~0.3)

If the above illustration of any symbol conflicts with the illustration of that symbol given in the following text then preference should be given to the illustration, which is provided in the following chapters.
CHAPTER 1

INTRODUCTION

1.1 Research background

Marine oil pollutions have negative impact on the marine environment and have significantly adverse effects on fisheries, tourism, and costal industries and sometimes are used as weapon such as made by Israel against Lebanon in 1982 and the second Arab Gulf War between Iraq and the allied forces led by the U.S (Muhanna, 2006). The direct impact of oil spills can cause damage to fishing and aquaculture resources by physical contamination and toxic effects. Also, it disrupts the maritime and coastal business activities. The nature and extent of the impact of oil spill on seafood production depends on the characteristics of the spilled oil, the circumstances of the incident and the type of fishing activity or businesses in the affected (IOTPF, statistic, 2009). Also shoreline industries are directly affected because of extension of heavy oil along the coastline such as the 1978 Amoco Cadiz spill, the loss of 220 thousand metric tons of crude oil and bunker fuel polluted some 240 miles of the Brittany coast (Grigalunas, et al, 1986). In addition, the coastal population communities may affected be as described by White and Molly (2003) in the first 1.5 years after 1986 spill, and contrast their findings with earlier works regarding the effects of oil on tropical community.

Usually, oil pollution is caused by ships, offshore units, seaports, pipelines and oil handling facilities. There are Information gathered from published sources such as shipping press, vessel owners and their insurers and other specialized publications which says that the large spills are often resulting from collisions,
groundings, structural damage, fires and explosions, whereas the majority of individual reports relate only to small operational spillages (ITOPF, 2004). In the event of oil pollution incident, predicting the oil slick trajectory and oil fate will lead to prompt an effective oil pollution control strategies to mitigate or minimize the damages resulting from such incidences on environment and socio-economic activities.

The prediction of oil slick trajectory depends upon the seawater current and wind directions and speeds with assistance of transmission technology to confirm the trace of predicted trajectory. Whereas the oil behavior is affected by a number of physical and chemical characteristics, climate and the sea conditions which lead to spreading, dispersion, evaporation and emulsification. The prediction should be verified by air and/or sea reconnaissance to deploy and control the operation at sea, for timely protection of sites along threatened coastlines and the preparation of resources for shoreline clean-up.

Employing the contingency plan to combat the oil pollution and choosing the suitable strategy for each place requires good background information about the sensitivity of attacked shoreline environmentally and economically. After that, employing the righteous equipments and techniques, which are available for recovery, dispersion and clean-up should be properly implemented to reach the net of environmental and economical benefit (NEEB).
1.2 Problem statement

Marine oil pollution has negative impact on the environment and socio-economic activities for short and long terms, and the major spill is considered as a disaster because of its destructive effects. The effects of an oil spill on the environment and socio-economic activities and the effectiveness of cleanup and control vary significantly with the type of oil spilled. As happened in 1978, the incident of Amco Cadiz oil spill where 220 thousand metric tonnes of crude oil and bunker fuel extend along 240 miles of the Brittany coast. Resulted a negative impact on the environment and the coastal population communities at least in the first 1.5 year (White and Molly, 2003).

The severity of the effects of an oil spill on the natural resources and socio-economic depends on many factors. These factors include the type and amount of oil and its behavior once spilled into seawater, the physical characteristics of the affected area, weather conditions and seasonal time of year, which affect on the oil fate and slick trajectory, the type and effectiveness of response operations and the biological characteristics of the area (Fingas, M., 2000). Oil pollution control strategies need to be developed for each oil fate and slick trajectory scenario. Since each scenario is unique and independent, simulation method is preferred.

The simulation of oil pollution incident in the south west of Johor state in Malaysia is used. Software simulations and mathematical relationships are used to predict the oil fate and slick trajectory. Based on the predictions, the combating strategies are chosen according to the sensitivity of the shorelines which may be affected and the capability of in-hand combating equipment. The suitable response operations lead to minimizing the long and short-term impacts on the environment and economical activities in this area.
1.3 Objectives

Study all of the circumstances of oil pollution response operations. The right way to make combating operation effective, it must be based on a scientific background to reach the optimum response level. The scientific background consists of knowing how the oil spill affects the environmental and economical resources. To avoid or mitigate the harshness of oil spill incident, there are some technical procedures that should be followed. The procedures include to where the oil slick is moving because of the forces of wind and sea current, what is happening to the physical and chemical characteristics of the spilled oil, what is the nature of coast lines and how the in-hand equipments could be employed effectively. The objectives of this research are as:

i. Predict the oil pollutants fate

ii. Predict the oil slick trajectory

iii. Identify the types of shorelines which may be affected and their characteristics

iv. Establish a matrix of equipments and the useful techniques
1.4 **Scope of Project**

This project covers the following:

i. Variables for the research have been strategically limited to common variables used to define oil fate and oil trajectory. These are spreading, evaporation, dispersion, viscosity and emulsification. Variables not commonly used in the real world such as dissolution, photo-oxidation, biodegradation and sedimentation here are not included.

ii. For data analysis and simulation of trajectory, currently available mathematical formulas and software have been used. For example, software by OSTC for calculation of slick trajectory has been used and ADIOS2 has been used to predict the weathering processes.

iii. The model has been designed to be applicable for the development of the oil pollution combating strategies of typical weather conditions.

1.5 **Organization of the research**

This research is organized into six chapters:

i. Chapter one gives introduction, shows the importance of this research and discusses a general overview of research activities

ii. Chapter two reviews the main areas of oil pollution control which are related to this research
iii. Chapter three explains the methods which will be used to achieve the objectives of this research

iv. Chapter four consists of the results which are gotten from this research

v. Chapter five contains the discussion on the results

vi. Chapter six includes the conclusion of this research and the suggested future works