MUSCULOSKELETAL DISORDERS AMONG OFFSHORE-STRUCTURE FABRICATION YARD WORKERS

EMILY CH’NG HUEY LING

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Industrial Engineering)

FACULTY OF MECHANICAL ENGINEERING
UNIVERSITI TEKNOLOGI MALAYSIA

NOVEMBER 2010
Specially dedicated to...

God, my darling husband Daniel, dearest Dad and Mom,

and Sister,

for their love, support and prayers.
ACKNOWLEDGEMENT

First and foremost, I thank God for His faithfulness, blessings, provisions and favour and sustaining me throughout this research. The successful completion of this research would definitely be impossible without the kind, helpful and wonderful individuals who have contributed so much in the completion of this project.

I am indebted to my wonderful supervisor, Associate Professor Dr. Mat Rebi Abdul Rani for his continuous guidance, advice and patience that he has provided me throughout this entire project. Thank you very much.

My appreciation also goes to Mr. Ng Boon Kong, the safety manager of XYZ Yard for his assistance throughout all my trips to the yard for this research.

I would like to acknowledge Mr. Jafri bin Mohd. Rohani and Mr. Wan Harun bin Wan Hamid for their help and guidance provided from their respective areas of expertise.

My heartfelt thanks go to my loving husband who has been extremely supportive thus enabling me to complete this project successfully.

Lastly, my deepest gratitude goes to my wonderful parents and sister whose endless love, encouragement and prayers have seen me through and played the biggest role in sustaining me throughout this entire project.
ABSTRACT

Many researches in the area of ergonomics are focused on musculoskeletal disorders (MSDs) among workers in various line of work such as manufacturing, agriculture and construction. However, there is very little research done on MSDs among workers in heavy industries. The intention of this study is to establish the prevalence of MSDs among offshore-structure fabrication yard workers. A cross-sectional study was conducted among 132 yard workers. Preliminary direct observation on the workers general working conditions were carried out. Data on MSD symptoms of pain/discomfort were then collected via modified Standardized Nordiq questionnaires with some additional questions on the risk factors related to work-related MSDs. Overall, there are 82 (62.1%) workers who reported pain/discomfort and 50 (37.9%) others without pain/discomfort. Out of the 82 workers who had pain/discomfort within the last 12 months, 39% are welders, 9.8% are grinders, 18.3% are fitters, 7.3% are riggers, 8.5% are crane operators, 3.7% are helper welders and 13.4% are foreman and supervisors. The highest area reported of pain/discomfort is at the low back/waist (41.7%), followed by shoulder (18.9%) and neck (16.7%). Repetitive movement (OR =3.050) and bending (OR=2.417) are significant predictors of low back pain/discomfort. In conclusion, some ergonomic suggestions were provided to reduce to risks of MSDs in the workplace.
ABSTRAK

Banyak kajian yang dibuat dalam bidang ergonomik bertumpu kepada musculoskeletal disorders di kalangan pekerja di industri pembuatan, pertanian dan pembinaan. Tetapi, tidak banyak kajian tentang MSD yang dibuat di kalangan pekerja di industri berat. Maka, tujuan kajian ini ialah untuk mengkaji MSD di kalangan pekerja di satu offshore-structure fabrication yard. Kajian ini dijalankan ke atas 132 pekerja. Sebelum itu, pemerhatian ke atas kondisi kerja pekerja dilakukan. Data berkenaan simptom MSD seperti kesakitan dan/atau ketidakselesaan badan didapati daripada borang soal selidik. Keseluruhannya, 82 (62.1%) pekerja melaporkan kesakitan dan/atau ketidakselesaan manakala 50 (37.9%) pekerja tidak melaporkan sebarang kesakitan dan/atau ketidakselesaan. Antara 82 pekerja yang mengalami kesakitan/ketidakselesaan dalam 12 bulan lepas, 39% terdiri daripada welder, 9.8% grinder, 13.8% fitter, 7.3% rigger, 8.5% operator kran, 3.7% pembantu welder dan 13.4% penyelia. Bahagian badan dengan kes kesakitan/ketidakselesaan yang tertinggi adalah di bahagian belakang bawah/pinggang (41.7%), diikuti bahu (18.9%) dan leher (16.7%). Pergerakan berulang-ulang (OR = 3.050) dan membongkok (OR = 2.417) merupakan factor signifikan kesakitan/ketidakselesaan bahagian belakang bawah. Beberapa cadangan telah di kemukakan untuk mengurangkan risiko berlakunya MSD di tempat kerja.
CHAPTER 1

INTRODUCTION

1.1 Introduction

The industries today are alert on the rise of musculoskeletal disorders among their workers (Choobineh et al., 2007). They have also begun to take heed and understand the factors in the job and workplace that may contribute to musculoskeletal disorders. Ergonomists everywhere around the world (Westgaard, 2000, Guo et al, 2004, Morken, et al, 2007) has realize the prevalence of musculoskeletal disorders among workers in the various industries hence providing numerous published findings to educate and propose improvements that can be done to reduce such impairments. In the United States, there were 317,440 cases of musculoskeletal disorders which cause people many frequent visits to the clinic and about 10 days away from work to treat and recover from musculoskeletal disorders (Bureau of Labor Statistics, U.S. Department of Labor, 2009). In the United States, apparently the number of musculoskeletal cases are decreasing, declined about 5 percent (17950 cases in 2007), and by 11 percent from 2006 (Bureau of Labor Statistics, U.S. Department of Labor, 2009). The decrease in number of musculoskeletal disorder cases in the United States could be due to the enforcement of safety and extensive educational awareness program done by the Occupational, Safety and Health administration. Musculoskeletal disorders are also a concern in the European Union (Bevan et al., 2009). According to them it reported that 100 million Europeans suffer from work-related chronic musculoskeletal p
Musculoskeletal disorders have been investigated by many researchers and found to have affected workers from many industries, ranging from construction (Holstrom and Engholm, 2003; Vingard et al., 1992), medical (Smith et al., 2004), agriculture (Hartman et al., 2005), electronics (Chee et al., 2004,) and telecommunications (Ismail and Shaharuddin, 2008). The prime focus of this research is workers from a heavy industry which is not exempted from experiencing musculoskeletal disorders as well. In this chapter, we will look into the background of the study, problem statement, research objectives, scope, and significance of research, research structure and conclusion.

1.2 Background of study

In today’s industry, resources, skills, innovation and technology, and strategic plans contributes to the increased of a company’s productivity. Among all these, workers are the main asset of a company, and companies need to ensure that they have good workforce health. Apart from safety, ergonomic aspects play an important role in determining the level of comfort in the workplace or jobs which workers are subjected to.

Muscle and joint pain costs European economies up to €240 billion a year (The Work Foundation, UK, 2009). In a report by Bevan, et al., (2009) claims that cost of back pain have been estimated to exceed €12 billion. About 85 percent of people with back pain take less than 7 days off. This shows that musculoskeletal disorders cost not only in monetary terms, but also in cases of high medical leave taken to treat such problems.

The Malaysian Social Security Organization (SOCSO) has compiled the number of accidents due to over-exertion or strenuous movements for the year 2006. Figure 1.1 shows the breakdown of the number of accident cases and the categories
while Figure 1.2 shows the number of occupational diseases by causing agent for the year 2006.

Figure 1.1: Number of accident cases reported by SOCSO due to over-exertion or strenuous movements.

<table>
<thead>
<tr>
<th>AGEN PENYEbab AGENTS CAUSES</th>
<th>BIL KES DILAPORKAN NO. OF CASES REPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Occupational musculo-skeletal disorders</td>
<td>2310 Musculo-skeletal diseases caused by specific work activities or work environment where particular risk factors are present. Examples of such activities or environment include: a) rapid or repetitive motion; b) forceful exertion; c) excessive mechanical force concentration; d) awkward or non-neutral postures; e) vibration. Local or environmental cold may potentiate risk</td>
</tr>
</tbody>
</table>

Figure 1.2: Number of occupational diseases by causing agent for the year 2006.

It was revealed that Malaysia had the lowest number of occupational disease among the other Asian countries (Azman, M. 2007). This however does not mean that the occupational diseases are decreasing. Figure 1.3 shows the trend of occupational diseases in Malaysia from year 1995 to 2006. He added that in Malaysia, there is increase in the number of cases of noise induced hearing loss, occupational lung disease and musculoskeletal disease. In Malaysia, detection of occupational disease is low and is estimated less than 1 percent of the total
compensation paid. Occupational disease is only 0.5 percent of the total employment injury. According to him, if occupational disease is unanticipated, unrecognized, not monitored, no medical surveillance conducted, undiagnosed, untreated and unregistered, there is no way to compensate workers.

![Figure 1.3: Trend of occupational diseases in Malaysia from year 1995-2006 (Azman Mohamad, 2007)](image)

To summarize, there may be cases of occupational diseases, including musculoskeletal disorders which are not reported due to the above reasons mentioned. Thus, this research zooms into one of the heavy industry workforce in Malaysia to find out the existence of such cases, and the types of musculoskeletal disorders present among their workers.

1.3 Problem Statement

Heavy industries, according to the Oxford Dictionary are industries which are concerned with production of metal and machines. According to the Business Dictionary, heavy industries are industries such as automobile, mining, petroleum,
ship building and steel industries which require very large capital investment in weighty machinery and huge plants.

Thus, offshore structure fabrication yard can be categorized as a heavy industry as these yards fabricate steel structures such as jackets and topsides. Among the works done in a fabrication yard include metal works, welding, grinding, cutting, electrical and instrumentation works, and sandblasting. Such jobs may involve tasks performed in awkward body postures, at non adjustable workstations, on scaffolds, and in enclosed or confined spaces (Sabella, 2003; United States National Shipbuilding Research Program Report, 2004). Such postures and conditions are the risk factors associated to musculoskeletal disorders (Torell, et al., 1988; Mooney, et al., 1996). Blue collar workers are usually exposed to work requiring manual material handling, strenuous shoulder or hand movements, awkward postures and exertion (Alexopoulos, et al., 2006).

There is very little research done on musculoskeletal disorders in heavy industry. Torell et al., (1988) and Alexopoulos et al., (2006) researched on musculoskeletal disorders in workers in the shipyard, while Landau, et al, (2008) researched on musculoskeletal disorders in the automotive industry. Thus, this study is important to evaluate the occurrences of musculoskeletal disorders or its symptoms among workers in a heavy industry in Malaysia, namely an offshore structure fabrication yard. With that in mind, the purpose of this study is to create more awareness whether musculoskeletal disorders affect workers working in such yards, the areas of body affected and the risk factors which are associated to the development such disorders.
1.4 Research Objectives

The objectives of this research are:

1) To establish the prevalence of Work-related Musculoskeletal Disorders (WMSD) symptoms of pain/discomfort among the workers in an offshore structure fabrication yard in Malaysia.
2) To identify the area of reported pain/discomfort if prevalence is established.
3) To account the incidence and severity of pain/discomfort among workers.
4) To determine the presence of any relationship between the workers age, working experience and other risk factors with WMSDs.
5) To conduct a Rapid Upper Limb Assessment (RULA) on selected extreme work postures
6) To propose some improvements that could be implemented to reduce cases of MSD.

1.5 Scope of Research

The research covers the following scope:

1) An offshore structure fabrication yard in Malaysia focusing on the workshops.
2) Workers between 18-58 years of age.
3) Workers who do not have any body pain/injury prior working in the workshops.
1.6 Significance of Research

The significance of the research would be the enlightenment of the workers of the industry itself, the management as well as other researcher’s on the prevalence of Work-related Musculoskeletal Disorders in heavy industries in Malaysia. This study is important because many researches are focused on musculoskeletal disorders in other industries, especially electronics and nursing, but very few were conducted among workers in yards. This research also serves as an eye opener for industries to take preventive measures to reduce the cases of work-related musculoskeletal disorders among their employees.

1.7 Research Structure

This research comprises six chapters. Chapter one covers the introduction, whereby the objectives, scopes and significance of this research are clearly underlined. Chapter two is the literature review which covers the findings from researchers on work-related musculoskeletal disorders from various industries, and the risk factors associated to musculoskeletal disorders. In chapter three, the methodology in which the research is carried out is discussed. The fourth chapter results from the questionnaires, as well as the analysis of the data obtained. In chapter five, discussions are made in view of the results obtained from the previous chapter. In the final sixth chapter, conclusions are made to wrap up the entire research. Recommendations for future works are also given for future study in this area of research.
1.8 Conclusion

This chapter has justified the purpose to carry out the research, background of the study, problem statement, and objectives of the research, scope and the research structure. The next chapter focuses on the literature of the area under investigation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background of study</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Objectives</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope of Research</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Significant of Research</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Research Structure</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Musculoskeletal Disorders Overview</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Work-related Musculoskeletal Disorders Defined</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Neck or neck/shoulder musculoskeletal disorders</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Upper Limb Musculoskeletal Disorders</td>
<td>12</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Shoulder musculoskeletal disorders</td>
<td>12</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Elbow musculoskeletal disorders</td>
<td>13</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Wrist/hands musculoskeletal disorders</td>
<td>13</td>
</tr>
</tbody>
</table>
3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Available methods

3.2.1 Self reports

3.2.1.1 Standardized Nordiq Questionnaire

3.2.2 Observation methods

3.2.2.1 Rapid Upper Limb Assessment (RULA)

3.2.2.2 Ovako Working Posture Analyzing System (OWAS)

3.2.2.3 Rapid Entire Body Assessment (REBA)

3.2.2.4 NIOSH Lifting Equation
3.2.2.5 Washington State Ergonomic checklist 42
3.2.3 Direct measurements 43
3.3 Methods incorporated for this study 44
 3.3.1 Preliminary Direct Observation 44
 3.3.2 Questionnaires 45
 3.3.3 Statistical Analysis 46
3.4 XYZ Offshore-Structure Fabrication Yard 46
3.5 Conclusion 48

4 RESULTS 49
4.1 Introduction 49
4.2 Preliminary direct observation results 49
4.3 Demographic 51
 4.3.1 Workers age, working experience and job type 52
 4.3.2 Relationship between worker age and working experience 52
4.4 Prevalence of MSD symptoms among workers with different job types 53
4.5 Reported pain/discomfort on specific body part 53
 4.5.1 Reported body pain/discomfort cases based on job type 54
4.6 Incidence of pain/discomfort among workers 56
4.7 Severity of pain/discomfort among workers 56
4.8 Relationship between age and pain/discomfort 57
4.9 Relationship between workers working experience and pain/discomfort 57
4.10 Job requirements based on job types
4.11 Job requirements and MSD symptoms
4.12 Job requirements and specific body part pain/discomfort
4.13 Relationship between various work related risk variables (job requirements) and body part pain/discomfort
 4.13.1 Relationship between lifting heavy object and pain/discomfort at any body part
 4.13.2 Relationship between bending and pain/discomfort at any body part
 4.13.3 Relationship between twisting and pain/discomfort at any body part
 4.13.4 Relationship between reaching above shoulder and pain/discomfort at any body part
 4.13.5 Relationship between repetitive movements and pain/discomfort at any body part
 4.13.6 Relationship between push-pull objects and pain/discomfort at any body part
 4.13.7 Relationship between vibration and pain/discomfort at any body part
4.14 Logistic regression
4.15 Conclusion

5 DISCUSSION

5.1 Introduction

5.2 Preliminary direct observation findings

5.3 Demographic

5.3.1 Workers age, work experience and job distribution

5.3.2 Relationship between workers age and working experience

5.4 Prevalence of MSD symptoms among workers with different job types

5.5 Reported pain/discomfort at specific body part

5.5.1 Reported body pain/discomfort cases based on job type

5.6 Incidence of pain/discomfort among workers

5.7 Severity of pain/discomfort among workers

5.8 Relationship between age and pain/discomfort

5.9 Relationship between workers working experience and pain/discomfort

5.10 Job requirements based on job types

5.11 Job requirements and MSD symptoms

5.12 Job requirements and specific body part pain/discomfort

5.13 Relationship between various work-related risk variables (job requirements) and body part pain/discomfort

5.13.1 Relationship between lifting heavy object and pain/discomfort at any body part
5.13.2 Relationship between bending and pain/discomfort at any body part
5.13.3 Relationship between twisting and pain/discomfort at any body part
5.13.4 Relationship between reaching above shoulder and pain/discomfort at any body part
5.13.5 Relationship between repetitive movements and pain/discomfort at any body part
5.13.6 Relationship between push-pull objects and pain/discomfort at any body part
5.13.7 Relationship between vibration and pain/discomfort at any body part

5.14 Logistic Regression
5.15 Final observation comments
5.16 Recommendations
5.17 Conclusion

6 SUMMARY AND FUTURE WORKS
6.1 Introduction
6.2 Summary
6.3 Future works
6.4 Conclusion

REFERENCES 104
APPENDIX 122-134
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of some neck and upper limb musculoskeletal disorders according to pathology</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Work-related risk factors of neck and upper limb musculoskeletal disorders</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Evidence of work-related risk factors of low back pain according to a review by NIOSH</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Example of studies using self-reports</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Examples of simpler observation methods</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>Exposure factors assessed by various methods</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Advanced observational techniques</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>REBA Action Levels</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Examples of direct methods</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Worker age range, mean and standard deviation</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of worker’s working experience</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of workshop workers based on job types</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Result for the relationship between workers age and working experience</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Prevalence of MSD symptoms among workers based on job type</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>Prevalence of WMSD based on body part pain/discomfort</td>
<td>54</td>
</tr>
</tbody>
</table>
4.7 Reported body pain/discomfort (in %) based on job type
4.8 Incidence of pain/discomfort among workers in the past 12 months
4.9 Severity of pain/discomfort among workers in the past 12 months
4.10 Number of workers with and without pain/discomfort based on age category
4.11 Pearson Chi square results for age and MSD symptoms
4.12 Number of workers with and without pain/discomfort based on work experience
4.13 Pearson Chi square results for work experience and MSD symptoms
4.14 Tabulation of job type and the workers job requirements
4.15 Tabulation of job requirement and the presence of MSD symptoms among workers
4.16 Weights of the objects lifted as perceived by workers
4.17 Areas of Body pain/discomfort based on the reported job requirements
4.18 Chi square result for lifting heavy object and neck pain/discomfort
4.19 Chi square result for bending and low back/waist pain/discomfort
4.20 Chi square result for twisting and shoulder pain/discomfort
4.21 Chi square result for reaching above shoulder and neck pain/discomfort
4.22 Chi square result for repetitive movements and low back/waist pain/discomfort
4.23 Chi square result for push-pull objects and upper back pain/discomfort
4.24 Chi square result for vibration and neck pain/discomfort
4.25 SPSS results for logistic regression when all risk factors are included in one model
Univariate logistic regression results for repetitive movement and low back pain/discomfort

Univariate logistic regression results for bending and low back pain/discomfort.

Chi-square result for overall model

Logistic regression results when both risk factors are included in one model

RULA Action level for the postures observed in Figure 4.1

Association between lifting heavy objects and pain/discomfort at the various body parts

Association between bending and pain/discomfort at the various body parts

Association between twisting and pain/discomfort at the various body parts

Association between reaching above shoulder and pain/discomfort at the various body parts

Association between repetitive movement and pain/discomfort at the various body parts

Association between push-pull object and pain/discomfort at the various body parts

Association between vibration and pain/discomfort at the various body parts

Odd ratio for each risk factor when all are considered in the logistic regression model
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Number of accident cases reported by SOCSO due to over-exertion or strenuous movements</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Number of occupational diseases by causing agent for the year 2006</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Trend of occupational diseases in Malaysia from year 1995-2006</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Body parts susceptible to work-related musculoskeletal disorders</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Topside</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Structure/piping workshop</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Types of awkward postures adopted by workers at their job</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>Distribution of the workers working experience.</td>
<td>72</td>
</tr>
<tr>
<td>5.2</td>
<td>Distribution of workshop workers based on job type</td>
<td>72</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage of workers reported of having MSD symptoms versus job type</td>
<td>74</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage of body part pain/discomfort cases</td>
<td>74</td>
</tr>
<tr>
<td>5.5</td>
<td>Number of workers reporting body pain/discomfort based on job type</td>
<td>75</td>
</tr>
<tr>
<td>5.6</td>
<td>Frequency of pain/discomfort in the workers in the last 12 months</td>
<td>77</td>
</tr>
<tr>
<td>5.7</td>
<td>Level of pain/discomfort among yard workers</td>
<td>78</td>
</tr>
<tr>
<td>5.8</td>
<td>Presence of pain/discomfort based on age category</td>
<td>79</td>
</tr>
<tr>
<td>5.9</td>
<td>Presence of pain/discomfort based on work experience</td>
<td>80</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Number of workers based on their job type and their reported job requirements</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Workers reported job requirements and the presence of pain/discomfort</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Workers reported job requirements and the presence of pain/discomfort</td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Knee pad which could be worn by worker during work</td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Overturned paint containers or plastic roll holders used as stools</td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>Proper stool which could be use as replacement for makeshift stool</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Example of questionnaire</td>
<td>122</td>
</tr>
<tr>
<td>B</td>
<td>Checklist</td>
<td>127</td>
</tr>
<tr>
<td>C</td>
<td>Sample SPSS Data</td>
<td>128</td>
</tr>
<tr>
<td>D</td>
<td>Rapid Upper Limb Assessment (RULA) Worksheet</td>
<td>133</td>
</tr>
<tr>
<td>E</td>
<td>Example of RULA score for picture (a), Figure 4.1</td>
<td>134</td>
</tr>
</tbody>
</table>