ELASTOHYDRODYNAMIC LUBRICATION FOR BIO-BASED LUBRICANTS IN RECTANGULAR CONJUNCTION

ALIA BINTI IBRAHIM

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

DECEMBER 2010
To my late baby, my beloved son Muhammad Azizi Syalia and my family
Knowledge of tribology is very important for successful design of machine elements. The most effective mean of overcome failures in machine elements is by proper lubrication. With the presence bio-based lubrications in the industry, the tribology understanding will changed significantly and will directly affect the performance and reliability to the machine elements. In this study, involute spur gear is used and remodeled using computational fluid dynamic software to simulate speed and squeeze phenomena behaviours. The gear teeth load is treated in a simplified idealistic way according to the experimental gear load spectrum. This analysis will enable the study of elastohydrodynamic lubrication in rectangular conjunction with different type of bio-based lubricants. Emphasis of analysis is focused on the speed and dynamic pressure distribution along the pinion surface. For each type of lubricant, computations were carried out in sixteen different low speeds which are 1.00 m/s until 0.05 m/s and 0.01 m/s. The results show that computer modelling exercise have demonstrated CFD with standard k-epsilon model is suitable for modelling a rectangular conjunction.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Scopes of Study</td>
<td>3</td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW

2.1 Rectangular Contact

2.2 Non-steady-state elastohydrodynamic conditions
 for early 1950s and 1960s
 2.2.1 Non-Steady-state elastohydrodynamic

2.3 Future solutions to the elastohydrodynamic lubrication problem for real surfaces lubricated
 by real fluids

3 MATHEMATICAL OF FORMULATION

3.1 Reynolds’ Theory of Hydrodynamic Lubrication

3.2 Reynolds’ Assumptions

3.3 Balance of Forces

3.4 Flow, loads and center of pressure
 3.4.1 Mass flow rate per unit width
 3.4.2 Tangential load components
 3.4.3 Shear forces
 3.4.4 Center of pressure

4 METHODOLOGY

4.1 Pre-Processing CFD
 4.1.1 Modeling
 4.1.2 Geometric Parameters Calculation

4.2 Pre-Processing CFD

4.3 Building Geometry

4.4 Meshing Process

4.5 Processing Computational Fluid Dynamic (CFD)
5 RESULTS AND DISCUSSIONS

5.1 Result 33

5.1.1 Dynamic pressure between two surfaces for Moringa Oil 35

5.1.2 Dynamic pressure between two surfaces for Crude Palm Olein 39

5.1.3 Dynamic pressure between two surfaces for Biodegradable Ester 46

5.1.4 Comparison between Moringa Oil, Crude Palm Olein and Biodegradable Ester at two surfaces 50

6 CONCLUSION

6.1 Conclusion 52

6.2 Recommendation for future research 52

REFERENCES 54

APPENDICES A-C 56
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Physical properties of different bio-based lubricants</td>
<td>25</td>
</tr>
<tr>
<td>5.1</td>
<td>Dynamic pressure on pinion for Moringa Oil lubricant</td>
<td>37</td>
</tr>
<tr>
<td>5.2</td>
<td>Dynamic pressure on pinion for Crude Palm Olein lubricant</td>
<td>44</td>
</tr>
<tr>
<td>5.3</td>
<td>Dynamic pressure on pinion for Biodegradable Ester lubricant</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Fluid film between two solid surfaces</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>A small element of fluid</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>Load components and shear forces</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Geometric parameters of an involute spur gear</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Computational domain</td>
<td>26</td>
</tr>
<tr>
<td>4.3</td>
<td>Spur gear domain</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Mesh faces of spur gear</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Variation of pressure between Y. Wang et al. and Bio-based lubricant</td>
<td>34</td>
</tr>
<tr>
<td>5.2</td>
<td>Dynamic pressure distribution when velocity inlet is 1.00 m/s</td>
<td>35</td>
</tr>
<tr>
<td>5.3</td>
<td>Dynamic pressure distribution when velocity inlet is 0.40 m/s</td>
<td>35</td>
</tr>
<tr>
<td>5.4</td>
<td>Dynamic pressure distribution when velocity inlet is 0.05 m/s</td>
<td>36</td>
</tr>
<tr>
<td>5.5</td>
<td>Variation of dynamic pressure and speed distribution on pinion using Moringa Oil lubricant</td>
<td>38</td>
</tr>
<tr>
<td>5.6</td>
<td>Dynamic pressure distribution when speed is 0.05 m/s</td>
<td>39</td>
</tr>
<tr>
<td>5.7</td>
<td>Dynamic pressure distribution when speed is 0.09 m/s</td>
<td>40</td>
</tr>
<tr>
<td>5.8</td>
<td>Dynamic pressure distribution when speed is 0.80 m/s</td>
<td>41</td>
</tr>
</tbody>
</table>
5.9 Dynamic pressure distribution when speed is 0.90 m/s 42
5.10 Dynamic pressure distribution when speed is 1.00 m/s 43
5.11 Variation of dynamic pressure and speed distribution on pinion using Crude Palm Olein lubricant 45
5.12 Dynamic pressure distribution when speed is 0.06 m/s 46
5.13 Dynamic pressure distribution when speed is 1.00 m/s 46
5.14 Variation of dynamic pressure and speed distribution on pinion using Biodegradable Ester lubricant 49
5.15 Pressure maximum and viscosity on pinion using bio-based lubricant 50
5.16 Pressure minimum and viscosity on pinion using bio-based lubricant 51
LIST OF SYMBOLS

\(\tau \) Shear stress
\(\gamma \) Shear strain rate
\(\eta \) Absolute viscosity
\(\sigma_s \) Normal stress
\(p \) Fluid pressure
\(\mu \) Coefficient of viscosity
\(u \) Flow velocity
\(q_m \) Mass flow rate
\(x_{cp} \) Center of pressure
\(f'a \) Shear force per unit length
\(F \) Force
\(dl \) Changes of deformation
\(E \) Modulus Young
\(\gamma \) Tangential load
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Result For Moringa Oil</td>
<td>56</td>
</tr>
<tr>
<td>B</td>
<td>Result For Crude Palm Olein</td>
<td>57</td>
</tr>
<tr>
<td>C</td>
<td>Result For Biodegradable Ester</td>
<td>58</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

The purpose of this paper is to review the development understanding of elastohydrodynamic lubrication (EHL) throughout twentieth century, to drawn attention to topics currently under investigation and finally to consider future direction. In 1886, Osborne Reynolds had established the foundations of fluid-film lubrication theory, following earlier experimental work on railway axle bearing by Petrov and Tower in 1883. In subsequent years, plain bearing technology developed rapidly but attempts to explain the effective lubrication of highly stressed counter-formal conjunction in gears, on the basis of hydrodynamic principles alone remained ineffective throughout most of the first half of the twentieth century. It was recognize that very high pressures associated with such counter-formal conjunctions would enhance the lubricant viscosity and causes substantial local elastic deformation. Both effects might contribute to satisfactory film deformation. When such effects were individually incorporated into analysis by various investigators, both indeed resulted in predictions of enhanced film thickness, but, when considered alone, neither was found to lead to values sufficiently large to be consistent with the experimentally recognized performance of gears.
The quandary was resolved in the middle of the twentieth century for nominal line contacts when the interactive effect of pressure upon both the viscosity and local elastic deformation was found to result in spectacular increases in the predicted film thicknesses in many lubricated, highly stressed machine elements. The subject became known as ‘elastohydrodynamic lubrication’ and it has dominated advances in the field of fluid-film lubrication in the latter half of the twentieth century. In 1970, Barwell reflected this idea when he wrote the elucidation of the mechanism of elastohydrodynamic lubrication may be regarded as the major event in the development of lubrication science since Reynolds ‘own paper’.

Film thickness equations were thus available in the 1980s for the analysis and design of any highly stressed, lubricated machine element, presenting gear geometries. Emphasis was focused upon film thickness, since it was necessary to ensure adequate separation of the rolling/sliding machine elements if adequate durability was to be ensured. Most of the numerical solutions considered Newtonian fluids and isothermal conditions in those early years, with different simplifications, and the observed agreement between theoretical predictions and experimental measurements of film thickness were recorded and made further refinement unnecessary.

Squeeze is an oscillating motion in normal direction towards each other. It happened in fluid film from the fact that a viscous fluid cannot be instantaneously squeezed out from the interface with two surfaces that are approaching each other. When two surfaces move apart, the fluid is sucked in and fluid film can recover its thickness in time for the next application (Pinkus and Sternlicht, 1961; Fuller, 1984; Hamrock, 1994). The effect is efficient in oscillations with high frequencies in the kilohertz to megahertz range at submillimeter amplitudes (Tam and Bhushan, 1987).

Continuum mechanics has served to illuminate the essential operating characteristics of many elastohydrodynamic conjunctions, but current consideration of nanometer rather than micrometer thick elastohydrodynamic films is increasingly leading to a consideration of molecular models of the interactions between the
lubricant and the solid boundaries. Approaches based upon molecular dynamics and instruments like the atomic force microscope are now being linked to the conventional continuum mechanics analysis of the past half century.

1.2 Objective

The objective of this study is to determine the correlation between speed and squeeze phenomena in rectangular conjunction elastohydrodynamic lubrication.

1.3 Scope of Study

Numerical analysis will be used in determining speed and squeeze phenomena behaviors of spur gear. Boundary conditions will act as a guide to avoid too much complexity. The scopes for this study are:

(i) To analyze in two dimensional (2D) model by using numerical modeling
(ii) To use bio-based lubricants
(iii) Temperature is constant at 313K.