USABILITY TESTING OF INDUSTRIAL TRAINING SYSTEM (ITS-UTM)
PHASE I FOR MODULES USED BY THE STUDENTS

KHOO SONG CHING

A project report submitted in partial fulfillment of the
requirements for the award of the degree of
Master of Science (Computer Science)

Faculty of Computer Science and Information Systems
Universiti Teknologi Malaysia

OCTOBER 2009
“To my beloved family and friends, thanks for being there, throughout this journey”
ACKNOWLEDGMENTS

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my supervisor, Associate Professor Dr. Norazah Binti Yusof for encouragement and guidance. Without her continued support and interest, this thesis would not have been the same as presented here.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to my colleagues and friends who have provided assistance at various occasions. Their views and tips are useful indeed. I am grateful to all my family members too.
ABSTRACT

Usability testing is the core of usability engineering practice to identify areas where users struggle with the site and make recommendations for improvement. Industrial Training Systems (ITS-UTM) is a web based application system which is developed to manage the industrial training process in Universiti Teknologi Malaysia (UTM). Since ITS-UTM is new system, no usability assessment has been done on it before. Therefore, a usability evaluation is needed to evaluate if ITS-UTM is easy to use for average students. However, the literature on usability testing offers surprisingly little help in how to measure usability, in particular how to select measures of usability. Therefore, it is needed to identify the suitable usability aspects and evaluation methods for usability testing on ITS-UTM. In this study, a usability evaluation model has been developed to evaluate the usability of ITMS in aspects of effectiveness, efficiency and satisfaction. The usability evaluation methods applied in this study is performance measurement, observation, and questionnaire. From the results, the overall effectiveness for Student Pre-registration and ITS-UTM are above the success criterion (70%). However, the efficiency and satisfaction of Student Pre-registration rated by subjects from questionnaires are low. For usability testing of ITS-UTM, the overall satisfaction rated by subjects after completing each task is high. Besides, the main usability problems met by the students have been identified in this study. Furthermore, this research found that correlations among effectiveness, efficiency, and satisfaction were medium correlated.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>1 PROJECT OVERVIEW</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.2 Problem Background</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.3 Problem Statement</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.4 Project Aim</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.5 Objectives</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.6 Scopes of Project</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.7 Significance of Project</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.8 Organization of Report</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
LITERATURE REVIEW

2.1 Introduction

2.2 The Importance of Usability

2.3 Common Definitions of Usability

2.3.1 User centered Design

2.4 Usability Testing

2.5 Usability Measurement

2.6 Usability Evaluation Methods

2.6.1 Analytic Methods

2.6.1.1 Usability Inspection

2.6.1.1.1 Heuristic Evaluation

2.6.1.2 Walk-through

2.6.2 Empirical Methods

2.6.2.1 Field Studies

2.6.2.2 Usability Testing in a Laboratory

2.6.2.3 Controlled Experiments

2.6.3 Usability Assessment Methods beyond Testing

2.6.3.1 Observation

2.6.3.2 Questionnaire

2.6.3.3 Interview

2.6.3.4 Think-aloud protocols

2.6.3.5 Focus Group

2.6.3.6 Card Sort

2.6.3.7 Automated Session

2.6.4 Summary of Usability Evaluation Methods

2.7 Analysis of Existing Usability Questionnaires

2.7.1 Software Usability Measurement Inventory (SUMI)

2.7.2 Questionnaire for User Interface Satisfaction (QUIS)
2.7.3 Computer System Usability Questionnaire (CSUQ) 37
2.8 Website Usability Evaluation Criteria 38
2.9 Industrial Training Management System (ITS-UTM) 41
2.10 Review of Existing Usability Tests 42
2.11 Summary 51

3 RESEARCH METHODOLOGY 52
3.1 Introduction 52
3.2 Methodology 52
3.3 Literature Review on Concepts of Usability and Existing Usability Evaluation Methods 54
3.4 Compare and Determine the Usability Aspects and Usability Evaluation Methods 55
3.5 Implement Usability Evaluation Methods 57
 3.5.1 Performance Measurement 57
 3.5.2 Observation 59
 3.5.3 Questionnaire 60
3.6 Conduct Usability Testing 62
 3.6.1 Development of Test Objectives 62
 3.6.2 Prepare Test Materials 62
 3.6.3 Acquire Representative Participants 64
 3.6.4 Set up Testing Environment 66
 3.6.5 Conduct the Test Session 67
 3.6.6 Analyze Data and Observations 69
 3.6.6.1 Summarize Data 69
 3.6.6.2 Analyze Data 71
 3.6.6.2.1 Identify Usability Problem 72
3.6.6.2.2 Classification of Usability Problems 72
3.6.6.3 Inferential Statistics 73
3.6.6.4 Spearman Correlation Coefficient 76
3.6.6.5 Cronbach’s Alpha Reliability Coefficient 77
3.6.7 Report Findings and Recommendation 82

3.7 Compare the Evaluation Methods Applied in Usability Testing 82

3.8 Analyze the Relationships among Effectiveness, Efficiency and Satisfaction 83

3.9 Summary 83

4 IMPLEMENTATION OF USABILITY TESTING AND RESULTS 84

4.1 Introduction 84

4.2 Development of Usability Testing on Student Pre-registration System 84
4.2.1 Development of Test Objectives 85
4.2.2 Prepare Test Materials 86
4.2.3 Acquire Representative Participants 87
4.2.4 Set up Testing Environment 89
4.2.5 Conduct the Test Session 90
4.2.6 Research Finding on Student Pre-registration System 90
4.2.6.1 Performance Measurement 91
4.2.6.2 Preference Data 92
4.2.6.3 Usability Problems Found in Student Pre-registration 94
4.2.6.4 Correlations among Effectiveness, Efficiency and Satisfaction 96
4.2.6.5 Reliability of Questionnaire
4.2.6.6 Recommendations and Conclusion

4.3 Development of Usability Testing on Industrial Training System (ITS-UTM)
4.3.1 Development of Test Objectives
4.3.2 Prepare Test Materials
4.3.3 Acquire Representative Participants
4.3.4 Set up Testing Environment
4.3.5 Conduct the Test Session
4.3.6 Research Finding on ITS-UTM
 4.3.6.1 Effectiveness
 4.3.6.2 Efficiency
 4.3.6.3 Satisfaction
 4.3.6.4 Problem Encountered for each Task
 4.3.6.5 Relationships among Effectiveness, Efficiency, and Satisfaction
 4.3.6.6 Reliability of Questionnaire
 4.3.6.7 Best Features, Worst Features and Desired Features
 4.3.6.8 Recommendation and Conclusion

4.4 Summary

5 DISCUSSION, SUGGESTIONS AND CONCLUSION
5.1 Introduction
5.2 Comparisons of Usability Evaluation Methods
5.2.1 Contributions of Types of Data Analysis 144
5.2.2 Objective and Subjective Results 145
5.2.3 Contribution of Usability Problems Found from Each Method 146

5.3 Analyze the Relationships among Effectiveness, Efficiency and Satisfaction 148

5.4 Limitation 151
5.5 Future Work 152
5.6 Contributions 152
5.7 Conclusion 153

REFERENCES 154
APPENDIX 160 -188
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Aspects of usability</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Examples of performance data and preference data</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of the usability methods</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Usability aspects covered by the three usability questionnaires</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Website usability evaluation criteria and design Guidelines</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of related usability testing researches</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>Classification of website usability evaluation criteria into usability aspects</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Format of Likert scale</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Categorization of subjective preference level according to mean score</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Test materials used in each usability testing</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Testing environment for each usability testing</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Types of data analysis</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Usability problem severity ranking</td>
<td>73</td>
</tr>
<tr>
<td>3.7</td>
<td>Example of ANOVA table</td>
<td>75</td>
</tr>
<tr>
<td>3.8</td>
<td>Reliability Coefficient</td>
<td>79</td>
</tr>
<tr>
<td>3.9</td>
<td>Reliability statistics</td>
<td>81</td>
</tr>
<tr>
<td>3.10</td>
<td>Summary item statistics</td>
<td>81</td>
</tr>
</tbody>
</table>
3.11 Item-total statistics 81
4.1 Questions in each usability aspects 87
4.2 Demographic data of subjects in usability testing of Student Pre-registration System 88
4.3 Score of effectiveness for Student Pre-registration System scanning method to login into the system respectively 91
4.4 Means of time used by subjects to register attendance 92
4.5 Subjective score of effectiveness 92
4.6 Subjective score of efficiency 93
4.7 Subjective score of satisfaction 94
4.8 Overall mean of usability for Student Pre-registration System 94
4.9 Usability problems found in Student Pre-registration System 95
4.10 Correlations among effectiveness, efficiency and satisfaction 97
4.11 Spearman's correlation coefficients among time spent on performing the tasks and satisfaction for Student Pre-registration System 98
4.12 Cronbach’s alpha reliability coefficient for the questionnaire used in Student Pre-registration 98
4.13 Sources of error and recommendation 100
4.14 Examples of questions in Part C 104
4.15 Demographic data of subjects in usability testing of ITS-UTM 105
4.16 Score of effectiveness for ITS-UTM 109
4.17 Time used by subjects to perform each task 110
4.18 Satisfaction rating by question (1=difficult to use, 5=easy to use) 111
4.19 Ease of Use (1= strongly disagree, 5= strongly agree) 111
4.20 Labeling (1= strongly disagree, 5= strongly agree) 112
4.21 Navigation (1= strongly disagree, 5= strongly agree) 113
4.22 Error (1= strongly disagree, 5= strongly agree) 114
4.23 Organization of Information (1= strongly disagree, 5= strongly agree) 114
4.24 Visual Appearance (1= strongly disagree, 5= strongly agree) 115
4.25 Overall Reaction (1= unsatisfied, 5= satisfied) 116
4.26 Scores of satisfaction in each aspect 116
4.27 Usability problems encountered in each task 118
4.28 Effectiveness and time 125
4.29 Summary of ANOVA for significant differences in time related to completeness of tasks 126
4.30 Differences of satisfaction ranking between completed and uncompleted tasks (1= difficult to use to 5= easy to use) 127
4.31 Summary of ANOVA for significant differences in satisfaction related to completeness of tasks 128
4.32 Spearman's correlation coefficients among time spent on performing the tasks and satisfaction for ITS-UTM 129
4.33 Cronbach \(\alpha \) of each section of questionnaire 130
4.34 Best features preferred by subjects 131
4.35 Worst feature commented by subjects 131
4.36 Desired features preferred by subjects 132
4.37 Sources of error and recommendation for ITS-UTM 134
5.1 Number of problems of each severity identified by each source of data 146
5.2 Summary of correlations among effectiveness, efficiency and satisfaction 150
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The growth of internet users in the world in 1995-2010 year</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Formative and summative evaluation</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Model of usability evaluation for ITS-UTM</td>
<td>56</td>
</tr>
<tr>
<td>3.3</td>
<td>The number of usability problems found in a usability test with N users</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Example of the observer sheet</td>
<td>102</td>
</tr>
<tr>
<td>4.2</td>
<td>Example of task list</td>
<td>103</td>
</tr>
<tr>
<td>4.3</td>
<td>Significant differences in time related to completeness of tasks</td>
<td>125</td>
</tr>
<tr>
<td>4.4</td>
<td>Significant differences in satisfaction related to completeness of tasks</td>
<td>127</td>
</tr>
<tr>
<td>5.1</td>
<td>Contributions of each source of data by the severity level of the problem identified</td>
<td>147</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>CSUQ</td>
<td>Computer System Usability Questionnaire</td>
</tr>
<tr>
<td>ITS</td>
<td>Industrial Training System</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
</tr>
<tr>
<td>QUIS</td>
<td>Questionnaire for User Interface Satisfaction</td>
</tr>
<tr>
<td>SUMI</td>
<td>Software Usability Measurement Inventory</td>
</tr>
</tbody>
</table>
CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

Most developers of interactive software and information system always want people to find their products easy to use. Generally, people also want software or information system to be usable with acceptable mental effort. By following a usability engineering process, users' abilities to find information and satisfaction with information system should improve significantly. In general, usability refers to how well users can learn and use a product to achieve their goals and how satisfied they are with that process.

According to Seffah, Guliksen and Desmarais (2005), usability is a multidimensional construct that can be evaluated from various perspectives and it means different things to different people. Nielsen (1993) points out that usability have five aspects: learnability, efficiency, memorability, error recovery, and satisfaction. Miles Macleod (1994) stated that usability can be thought of as quality of use, a quality of the interaction between user and system. Quality of use can be
used to measure usability as the extent to which specified goals can be achieved with effectiveness, efficiency and satisfaction by specified user carrying out specified tasks in specified environments (Bevan, 1995). However, most common usability testing applied the definition of usability defined by International Standards Organization (1994). ISO (1994) defines usability as “the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use”. Effectiveness is the user ability to successfully use a system to find information and accomplish tasks. Efficiency is the user ability to quickly accomplish tasks with ease and without frustration and satisfaction is how much a user enjoys using the system.

Usability testing fits in as one part of the user-centered design process. It is the core of usability engineering practice. Usability testing is a software evaluation technique that involves measuring the performance of typical end-users as they undertake a defined set of tasks on the system being investigated. It commenced in the early 1980s, as human factors professionals studied subjects using interfaces under real-world or controlled conditions and collected data on problems that arose (‘human factors’ is an early term for the human-computer interaction discipline). It has been shown to be an effective method that rapidly identifies problems and weaknesses, and is particularly used to improve the usability of products (Dumas and Redish, 1993).

Rubin and Chisnell (2008) defined usability testing is refer to, “a process that employs people as testing participants who are representative of the target audience to evaluate the degree to which a product meets specific usability criteria.” Usability evaluation methods can be divided into usability inspection and user participation. Usability inspection is evaluation methods based on expert’s analyses such as heuristic evaluation and cognitive walk-through. Evaluation methods involving user participation are laboratory studies, thinking aloud protocols, observation, focus group, interviews, questionnaires, and card sort.
Typical usability metrics include the time taken to complete a task, degree of completion, number of errors, time lost by errors, time to recover from an error, number of subjects who successfully completed a task, and so on (Nielsen 1993; Rubin and Chisnell 2008). The primary targets of usability testing are the user interface and other interactive aspects. Such testing is used by academics for research and development, and also by usability practitioners in the corporate environment for rapid refinement of interfaces and analysis of system usability.

1.2 Problem Background

Usability is the lifeblood of the web and it is important in software engineering. Usability study can evaluates a website's ease of use and the impact it has on end users. The purpose of a usability test is to identify areas where users struggle with the site and make recommendations for improvement.

Some studies have shown that 80% of total maintenance costs are related to user’s problem with the system but not technical bugs. Among them, 64% are usability problems (Seffah, Gulliksen and Desmarais, 2005). According to Dhillon (2004), nowadays billions of dollars are being spent annually in US to produce new products using modern technologies. The usability of these products has become important than ever before because of their increasing complexity, sophistication, and non-specialist users. Besides, over 30% of all software development projects are cancelled before their completion primarily due to inadequate user design input which resulting into a loss of over $100 billion annually to the U.S. economy alone.

At the most fundamental level, if a web based system is not ease to use then the user would not use it regardless of how much the website inspires. As a result, it
can be said that usability has become one of the most vital issues in website design. Therefore, a usability test should be developed in an effort to design a more user-centered web page.

Since usability is a multidimensional construct that can be evaluated from various perspectives and it means different things to different people. Therefore, it is important to identify and define the aspects of usability and its measurement in order to carry out a usability testing. Besides, there are a number of methods to evaluate usability. Different usability evaluation tools can be designed based on the different perspectives emphasized. Besides, methods for usability evaluation may have various purposes. Therefore, it is also important to select the correct usability evaluating methods in order to fit in the purpose of the study.

1.3 Problem Statement

Industrial Training Systems (ITS-UTM) is a web based application system which is developed to manage the industrial training process in Universiti Teknologi Malaysia (UTM). Since ITS-UTM is new system, no usability assessment has been done on it before. Therefore, a usability evaluation is needed to evaluate if ITS-UTM is easy to use for average students who undergo industrial training. It is hoped that the data collected within usability tests will make ITS-UTM easier to use and less frustrating.

The literature on usability testing, however, offers surprisingly little help in how to measure usability, in particular how to select measures of usability. The papers (Frøkjær, Hertzum, and Hornbæk 2000; Hornbæk and Lai 2007; Jeng 2005;
Nielsen and Levy 1994; Sauro, and Kindlund 2005) investigating this issue have mostly looked at correlations between usability measures, but show mixed results.

Nielsen and Levy (1994) found that performance and preference were correlated in 75% of a selection of 57 studies, meaning that users in general preferred the application with which they performed best. In contrast, Frøkjær et al. (2000) argued that the usability aspects of effectiveness, efficiency, and satisfaction should be measured independently and not in general be expected to correlate.

In addition to addressing these differences in results, it has been suggested that analysis of correlations among usability measures would help understand better how usability can be measured. Therefore, the problem statements in this research are:

1. What are the usability aspects suitable for usability testing of ITS-UTM?
2. Which evaluation methods are suitable to apply in usability testing of ITS-UTM?
3. What are the relationships among the usability aspects (Effectiveness, Efficiency and Satisfaction)?

1.4 Project Aim

The aim of this research is to propose a suitable usability testing model for usability testing of Industrial Training System (ITS-UTM) Phase 1 for the modules used by the students.
1.5 Objectives

The objectives of this research are shown as follow:

1. To identify the suitable usability aspects for usability testing of ITS-UTM.
2. To apply the suitable evaluation methods for evaluating ITS-UTM.
3. To analyze the relationships among the usability aspects (Effectiveness, Efficiency and Satisfaction).

1.6 Scopes of Project

The scopes of the research are defined as below:

1. The usability of ITS-UTM is only assessing in aspects of effectiveness, efficiency and satisfaction. Satisfaction will look into the areas of ease of use, labeling, navigation, error, organization of information and visual appearance.
2. This research will only evaluate Student Pre-registration System and modules of ITS-UTM used by student.
3. The data collection methods in this research are only performance measurement, observation and questionnaire.
4. This research involves only students of semester 20092010/2 in FSKSM who are going to take industrial training in next semester.
1.7 Significance of Project

This research will give the contributions to develop a model for usability testing of ITS-UTM. The data collected within usability tests will contribute in future works for ITS-UTM improvement. Besides, the operational criteria and strategy to measure effectiveness, efficiency, and satisfaction and user’s criteria regarding ease of use, labeling, navigation, error, organization of information and visual appearance will be shown in this research. The analysis of relationships among effectiveness, efficiency and satisfaction is to provide information about how measures relate, which will help understand better what usability is and how to develop models of it, and select measures for usability studies.

1.8 Organization of Report

This report is divided into five chapters. The first chapter presents the introduction of the study, problem background, objectives and project scopes. Chapter 2 reviews on concepts of usability and usability evaluation methods. Chapter 3 discusses on the research methodology used to carry out the study systematically and chapter 4 provides implementation of usability testing and its’ results. Finally in fifth chapter is conclusion and suggestion for future work.

