RECOGNITION OF INTERACTING PRISMATIC FEATURES
FROM FEATURE BASED MODELS

YU ZHENG

A project report submitted in partial fulfillment of the
requirements for the award of the degree of
Master of Engineering (Mechanical Engineering)

Faculty of Mechanical Engineering
University Technology Malaysia

April 2010
Automated feature recognition is considered as the bridge between the Computer-Aided Design (CAD) and Computer-Aided Process Planning (CAPP). The automation of process planning requires the recognition of the features by implementing the feature recognition procedure to execute the planning of process. Many methods have been proposed nowadays corresponding to the various kinds of features in different types of CAD software packages. Under such conditions, many researchers have been contributed to this area of research. In this method, the effort is focused on features with inner loops. The selected features are rectangular boss, pocket and hole related to the machining features of pocket, hole, step and slot in isolated form or interacting form. The proposed method is tested using Visual Basic for Application (VBA) programming, and implemented on the Solidworks solid models. The measured performances are the total recognition time, design feature document and machining feature document. The result proves the feasibility of the proposed method. With a simple programming language and easy to understand algorithm the proposed method shows its overwhelming advantages in recognition the features with inner loops.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLATATIONS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Statement of Problem 2
1.3 Objective 3
1.4 Scopes 3
1.5 Research Stage 4
1.6 Significance 5

2 LITERATURE REVIEW

2.1 Introduction 6
2.2 Basic Concepts of Feature 6
 2.2.1 Form Feature Taxonomy 7
 2.2.2 Pratt and Wilson’s Feature Taxonomy 9
 2.2.3 Batterfield’s Feature Taxonomy 9
2.3 Features in Design and Manufacturing 10
METHODOLOGY

3 METHODOLOGY

3.1 Introduction

3.2 Selected Features

3.3 Definition of Features

3.3.1 Definition of Features in Design

3.3.2 Definition of Features in Manufacturing

3.3.3 Boss-Pocket Interacting Features
Concept and Element of Proposed Method

- 3.4

Proposed Method

- 3.5
 - 3.5.1 Design Feature Verification
 - 3.5.2 Machining Feature Verification and Particular Extraction

Summary

- 3.6

4 SYSTEM VERIFICATION

- 4
 - 4.1 Introduction
 - 4.2 Access to SolidWorks Information Structure
 - 4.3 SolidWorks API Object Model
 - 4.4 Visual Basic for Application (VBA)
 - 4.5 Implementation of the Proposed Method for Feature Recognition
 - 4.5.1 Solidworks Input
 - 4.5.2 Preparation Stage
 - 4.5.3 Recognition Stages
 - 4.5.3.1 Get Stock Size by Function
 \[\text{GetStockSize} \left(\text{swBody as sldworks}, \text{body2} \right) \text{ as Variant} \]
 - 4.5.3.2 Differentiate the Features by Loops
 - 4.5.3.3 Primary Differentiation
 - 4.5.3.4 Secondary Differentiation
 - 4.5.3.5 Post Process
 - 4.5.3.6 Machining Feature Extraction
 - 4.5.4 Data Output
 - 4.5.5 Experimentation of the Program for Feature Recognition
 - 4.5.6 Feature Information Result of Recognition

Summary

- 4.6
5 RESULT AND DISCUSSION

5.1 Introduction 82
5.2 Achievement of Objective 83
 5.2.1 Number of Feature VS Recognition Time 83
 5.2.2 Feature Data Output for Different Purposes 86
5.3 Achievement of Objective 87
5.4 Program Software for the Proposed Method 89
5.5 Approaches of the Research 89
5.6 Comparison with Other Methods 90
5.7 Advantages and Limitation of the Proposed Method 91
5.8 Recommendation of Future Work 92

REFERENCES 93
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of manufacturing features according to different perspectives</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Classification of feature interactions</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of feature recognition</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of various methodologies to recognize feature</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Features and loops</td>
<td>42</td>
</tr>
<tr>
<td>5.1</td>
<td>Relationship between the number of feature and the recognition time</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Recognition time VS number of features in pattern matching</td>
<td>86</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cindy’s form-feature taxonomy</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Design to manufacturing</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Feature-based manufacturing knowledge repositories</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Feature interaction</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Feature modeling of a box</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Basic types of solid modeling</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Data structure for B-rep models</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Block diagram for the design-by-feature approach</td>
<td>18</td>
</tr>
<tr>
<td>2.9</td>
<td>Feature model generation</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Common approaches for feature recognition</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Selected features</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Combinations of selected features to study</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Definitions of features in manufacturing</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Boss-Pocket interacting feature</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>Feature recognition framework</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Dual-level recognition process</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Procedures to extract the selected features</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>Coordinate point for machining features</td>
<td>49</td>
</tr>
<tr>
<td>3.9</td>
<td>Coordinate point and parameters for steps</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>Coordinate point and parameters for slot</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Solidworks API object model</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Steps of experimentation</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Work Coordinate System (WCS) for stock size</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>The API descriptions for plane parameter</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Basic principles to achieve the dimensions</td>
<td>61</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.6</td>
<td>Flow chart for function of different features by loops</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Flow chart for function of primary differentiation</td>
<td>65</td>
</tr>
<tr>
<td>4.8</td>
<td>Boss inside the pocket</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>Flow chart for examine the cavity property</td>
<td>67</td>
</tr>
<tr>
<td>4.10</td>
<td>Geometrical principles for examining the cavity property</td>
<td>68</td>
</tr>
<tr>
<td>4.11</td>
<td>Data extraction for the rectangular boss</td>
<td>70</td>
</tr>
<tr>
<td>4.12</td>
<td>Machining features for the boss feature</td>
<td>73</td>
</tr>
<tr>
<td>4.13</td>
<td>Boss-Pocket interacting feature</td>
<td>74</td>
</tr>
<tr>
<td>4.14</td>
<td>Format of the data output</td>
<td>75</td>
</tr>
<tr>
<td>4.15</td>
<td>Executing the program</td>
<td>77</td>
</tr>
<tr>
<td>4.16</td>
<td>Total time for recognition</td>
<td>77</td>
</tr>
<tr>
<td>4.17</td>
<td>Result of feature recognition for feature covered and their</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>combination</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Result of feature recognition for feature covered</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Relationship between the number of pocket and recognition</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Feature data output</td>
<td>87</td>
</tr>
<tr>
<td>5.3</td>
<td>Design feature output and design in Solidworks</td>
<td>88</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Background

Manufacturing organizations are always keen to find the ways to produce high-quality products at the lowest cost and shortest time. In order to achieve this objective manufactures are looking for an alternative ways to the traditional approaches to design, manufacturing, and management. Computer aided process planning (CAPP) is considered to be an effective way to adapt to the flexible manufacturing and reducing the planning time and increasing consistency and efficiency in modern industry.

However, parts’ geometry information is stored in CAD system in the form of low-level entities such as faces, vertices, edges and so forth rather than the actual manufacturing information of holes, slots, pockets etc. which can be virtually used in the computer aided process planning (CAPP). The main problem is that features are not neutral formats to transfer the CAD data to computer-aided manufacturing (CAM) system. On the other hand, there is a lack of absolute common or standard structure of database which is used to store the information related to the design due to the different types of CAD packages. An urgent solution should be found to overcome the obstacles. This chapter consists of five parts: statement of problem, objective, scope, research stage and specification of this research.
1.2 Statement of Problem

There are two approaches to create feature models are design by features and feature recognition which are used to actualize the manufacturing process from the CAD system.

Design by features, also known as feature-based design (FBD) enables the feature structures to be achieved by certain operations or shaping which is related to manufacturing information. In a typical feature-based design, the shapes that can be used in design are limited to individual basic machining features. The designer may be forced to consider the geometry from the machining point of view without using functional considerations. (Yuan-jye Tseng, 1999) In addition the features used to design the part do not necessarily represent the best way to manufacture it. (Regli, 1995)

Feature recognition is the mechanisms which are developed to extract the high-level features from the CAD solid model to act as the interface between computer aided design (CAD) and CAPP. Various methods for feature recognition are introduced nowadays. These methods include pattern matching approach, hint-based approach, volumetric decomposition approach and neural-network-based approach. A general consensus is reached that the recognition of interacting feature is the most important and challenge issue in feature recognition.

Despite promising research, many problems in feature recognition remain unsolved. Current research is looking at various hybrid methods combining basic recognition algorithms with rules or constraints to improve the accuracy of recognition. (Mantyla, Nau, and Shah, 1996) The initial idea of this thesis is to obtain the prismatic feature information from the feature base models with interacting feature using a specific feature recognition algorithm.
This study will concentrated on the extraction of interacting prismatic features rectangular boss from feature based modeling with the presence of blind pocket and through pocket by feature recognition approach using Solidworks software.

1.3 Objective

The purpose of this project is to develop a system based on the algorithm structured by using VBA programming of Solidworks which is using Application Programming Interface (API) to achieve the recognition of the interacting features from the model which has been created on feature based modeling in the form of 3D.

1.4 Scopes

This project is conducted within the following:

i Involve the topology and geometrical data from solid modeling;

ii The algorithm that will be developed will recognize interacting features using the feature definition of the model;

iii The system developed will use this algorithm;

iv Facilities used are: Solidworks for representation of solid models and Application Programming Interface (API) to implement the algorithm.
1.5 Research Stage

The study will proceed in the following five stages, the tasks of each stage are listed below.

i. Literature Review
 Survey the feature recognition development and methodology in CAD system on previous and current research.

ii. Development of a Suitable Method
 Survey the utilization of Application Programming Interface in developing algorithm for feature recognition in order to develop a specific algorithm.

iii. Development of the Proposed Algorithm
 Develop a specific algorithm for automatic feature recognition as listed in the scope according to the chosen method.

iv. Conducting test and experimentations on the Algorithm and Verify the Results

v. Evaluation
 Evaluate the compatibility and efficiency of the method to determine its capabilities and limitations.

Ahmad and Haque, Manufacturing feature recognition of parts using DXF files, 4th International conference on mechanical engineering, December 26-18, 2001, Dhaka, Bangladesh/pp.VI 111-115

Arumugan, Analysis of feature interaction and generation of feature precedence network for automated process planning, June, 2004

Butterfield, Green, Scott and Stoker, Part features for process planning, CAMI Report R-86-PPP-01, November 1986.
Cesar, Bengoetxea, Isabelle Bloch, Pedro Larrañaga, Inexact graph matching for model based recognition: evaluation and comparison of optimization algorithms.

Han, Pratt, Regli, Manufacturing feature recognition from solid models: a status report, *IEEE Transactions on robotics and automation*, vol.16, No.6 December 2000

Regli, 1995, Geometric algorithms for recognition of features from solid models, *PhD dissertation*, Univ. Maryland, College Park MD.

