COMPUTER-AIDED REAL-TIME KINEMATIC GLOBAL POSITIONING SYSTEM POSITIONING TECHNIQUE FOR DEFORMATION MEASUREMENT AND ANALYSIS

LEE CHEH HANG

UNIVERSITI TEKNOLOGI MALAYSIA
To my beloved family who unselfishly supported me throughout the entire endeavour and those who inspired me. They make it all worthwhile.
ACKNOWLEDGEMENT

There are many people I would like to recognise for their help and support with my research. Without them, this thesis would never have been possible for me.

First and foremost, I would like to convey my special thanks to my supervisor Prof. Dr. Halim Setan for accepting me as his student, particularly that he had three other researches on hand at that moment. My sincere gratitude also goes to his patient guidance and constructive suggestions throughout the entire research.

Next, I would like to thank my best friends who provided many idea and support for this research. Thank you Mr. Kee, Madam Chong, Miss Teong, Miss Lee, Mr. Shu, Mr. Voon, Mr. Sharuddin and Madam Suraya. I am deeply indebted to your kindness and help.

Besides, I would like to acknowledge everyone who provided the technical support for this research. Thanks to Mr. Abu Bakar (Faculty of Civil Engineering), Mr. Soeb (Geodesy Section, Department of Survey and Mapping, Malaysia), Mr. Nomy (Trimble Singapore), Mr. Lim (Global-trak System) and Mr. Bakri (Geodesy Laboratory, Faculty of Geoinformation Science and Engineering) for their help and kindness.

Lastly, I would like to express my deepest appreciation to my beloved family who have always unselfishly given me the proper guidance, encouragement and moral support throughout not only the research, but also my entire life. I love you all.
ABSTRACT

Scientific justification and technical feasibility of using Real-Time Kinematic Global Positioning System (RTK-GPS) positioning as the technique in recording the responses (in term of coordinate / position) of deformable structures have been proven very promising. The major advantages are the real-time measurement (either online or offline) and direct measurement of relative displacement. Nevertheless, the research, through the sampled data, shows the need of additional steps to handle the possible errors in direct employment of manufacturers’ RTK positioning solution for deformation monitoring. In addition, most of the further applications such as online, automated, continuous, etc., however, have to be self customized and developed. The sampled data comprise short baseline (1.8km, collected in Universiti Teknologi Malaysia) and medium length baseline (27.7km, provided by Geodesy Section, Department of Survey and Mapping, Malaysia). The research thus suggests an additional approach for RTK positioning integrity monitoring and deformation detection. The RTK positioning integrity monitoring includes error identification, outlier filtering and reference station stability checking. The essence of the approach is the Normal Point technique as well as the Local Threshold and Global Threshold. Reference for Local Tolerance and Global Tolerance are also discussed. To get the additional approach running more efficiently in one single system, prototype software, Sparrow, was developed in Visual Basic environment and by deploying the Trimble bundled software, which are Trimble GPS Configurator and Trimble Reference Station. Sparrow is also developed to serve for online, automated, and continuous deformation monitoring. At the same time, Sparrow provides real-time and past result presentation in both graphical and numerical format. Three tests are taken to verify the applicability of Sparrow and the validity of Normal Point.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Statements</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3 Research Objectives</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.4 Research Contributions</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.5 Research Methodology</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.6 Outline of the Thesis</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>DEVELOPMENT OF DEFORMATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MONITORING AND EMPLOYMENT OF GLOBAL POSITIONING SYSTEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>11</td>
</tr>
</tbody>
</table>
GLOBAL POSITIONING SYSTEM AND REAL-TIME RELATIVE KINEMATIC POSITIONING

3.1 Introduction 34
3.2 Basic Concept of Satellite Positioning 34
3.3 Satellite Range Measurements 37
3.4 GPS Signal Structure 39
3.5 GPS Ranging 40
 3.5.1 Pseudo-range Measurement 40
 3.5.2 Carrier Phase Measurement 43
3.6 GPS Positioning Mode 45
4
GLOBAL POSITIONING SYSTEM ACCURACIES
AND ERROR SOURCES
4.1 Introduction 58
4.2 GPS Accuracies 58
4.3 GPS Error and Bias Sources 61
 4.3.1 Satellite and Receiver Clock Biases 62
 4.3.2 Orbit Biases 64
 4.3.3 Ionospheric Delay 65
 4.3.4 Tropospheric Delay 66
 4.3.5 Carrier Beat Phase Ambiguity 67
 4.3.6 Cycle Slips 67
 4.3.7 Multipath and Imaging 69
4.4 GPS Augmentation Options 71

5
REAL-TIME KINEMATIC POSITIONING
INTEGRITY MONITORING AND DEFORMATION DETECTION
5.1 Introduction 73
5.2 Result of Sampled Data 74
 5.2.1 Short Baseline Group 74
 5.2.2 Medium Length Baseline Group 78
5.3 RTK Positioning Integrity Monitoring 79
 5.3.1 Error Identification 80
 5.3.2 Outlier Filtering 84
 5.3.3 Reference Station Stability Checking 87
5.4 Deformation Detection 89
6 PROTOTYPE SOFTWARE: SPARROW

6.1 Introduction

6.2 Software Briefing

6.3 Software Design

6.3.1 Data Collection

6.3.2 Data Processing

6.3.3 Data Transfer

6.3.4 Result Presentation

6.3.5 Data Archiving

6.4 Software Structure

6.4.1 System Segment

6.4.2 Field Segment

6.5 Software Functionalities

6.5.1 Online, Automated and Continuous Monitoring System

6.5.2 Refined RTK Positioning Solution

6.5.3 Versatile Result Presentation

6.5.4 Flexible and Scaleable Monitoring System

6.6 Result of Sparrow Field Test

7 CONCLUSION AND RECOMMENDATIONS

7.1 Introduction

7.2 Conclusion

7.3 Recommendations

7.3.1 Enhancements on Data Processing and Algorithm, and Hardware

7.3.2 Enhancements on Software Functionality and Stability

REFERENCES

APPENDICES A – F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of damage</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of global development of deformation monitoring</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Geodetic modelling of deformation processes in space and time</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Characterization and classification of deformation models</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>GPS biases and errors</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Particulars of the observations (short baseline)</td>
<td>74</td>
</tr>
<tr>
<td>5.2</td>
<td>Particulars of the observation (medium length baseline)</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Two parts of data extracted from original dataset</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Statistical summary of first epoch observation</td>
<td>92</td>
</tr>
<tr>
<td>5.5</td>
<td>Statistical summary of second epoch observation</td>
<td>93</td>
</tr>
<tr>
<td>6.1</td>
<td>Total of failed data</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Main focus of the research scope</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Research methodology</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Deformation as an element of a dynamic system</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Hierarchy of models in geodetic deformation analysis</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Method of system identification</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Advancement of monitoring scheme</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>The basic concept of satellite point positioning system</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Intersection of three ranges with radii</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>The basic concept of relative satellite positioning</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Pseudo-range measurement</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Carrier beat phase measurement</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>“Family tree” of GPS positioning</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Concept of pseudo-ranging</td>
<td>48</td>
</tr>
<tr>
<td>3.8</td>
<td>Absolute kinematic positioning</td>
<td>54</td>
</tr>
<tr>
<td>3.9</td>
<td>Relative kinematic positioning</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Satellite distributions of good and poor GDOPs</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Cycle slips</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Direct signal and multipath signal</td>
<td>70</td>
</tr>
<tr>
<td>5.1</td>
<td>Reference station at UTM observatory (left) and rover</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>station at UTM hockey field (right)</td>
<td></td>
</tr>
<tr>
<td>5.2 (a)</td>
<td>Time series of northing of first epoch (March 16, 2006)</td>
<td>75</td>
</tr>
<tr>
<td>5.2 (b)</td>
<td>Time series of easting of first epoch (March 16, 2006)</td>
<td>76</td>
</tr>
<tr>
<td>5.2 (c)</td>
<td>Time series of elevation of first epoch (March 16, 2006)</td>
<td>76</td>
</tr>
<tr>
<td>5.3 (a)</td>
<td>Time series of northing of second epoch (April 11, 2006)</td>
<td>77</td>
</tr>
<tr>
<td>5.3 (b)</td>
<td>Time series of easting of second epoch (April 11, 2006)</td>
<td>77</td>
</tr>
</tbody>
</table>
5.3 (c) Time series of elevation of second epoch (April 11, 2006) 78
5.4 Reference station BANT (Banting) at Sek. Men. Keb. Sg. Manggis (left); Rover station UPMS (UPM Serdang) at Jab. Kej. Biologi & Pertanian (right) 79
5.5 (a) Time series of elevation, MyRTKNet, 13:59:47 – 19:59:46, August 6, 2006 80
5.5 (b) Time series of elevation, MyRTKNet, 19:59:47, August 6, 2006 – 01:59:46, August 7, 2006 81
5.6 Time series of elevation, MyRTKNet, 01:59:47 – 07:59:46, August 8, 2006 81
5.7 (a) Time series of northing, MyRTKNet, 01:59:47 – 07:59:46, August 7, 2006 82
5.7 (b) Time series of northing variation, MyRTKNet, 01:59:47 – 07:59:46, August 7, 2006 83
5.8 (a) Time series of northing normal point of first epoch observation 86
5.8 (b) Time series of easting normal point of first epoch observation 86
5.8 (c) Time series of elevation normal point of first epoch observation 87
5.9 Reference station is disturbed 88
5.10 Sample layout of field component distribution 89
5.11 (a) Time series of northing (integrated) 90
5.11 (b) Time series of easting (integrated) 91
5.11 (c) Time series of elevation (integrated) 91
6.1 Fundamental of Sparrow 96
6.2 Structure of Sparrow 101
6.3 Workflow of Conveyor 103
6.4 Screenshot of main window of Conveyor 104
6.5 Screenshot of main window of Compiler 105
6.6 Sample layout of the components at the field 107
6.7 Real-time result presentation in graph form 109
6.8 Example of the distribution of field components in the larger area 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9 (a)</td>
<td>Results of first test – N</td>
<td>111</td>
</tr>
<tr>
<td>6.9 (b)</td>
<td>Results of first test – E</td>
<td>112</td>
</tr>
<tr>
<td>6.10 (a)</td>
<td>Results of second test – N</td>
<td>112</td>
</tr>
<tr>
<td>6.10 (b)</td>
<td>Results of second test – E</td>
<td>113</td>
</tr>
<tr>
<td>6.11 (a)</td>
<td>Results of third test – N</td>
<td>113</td>
</tr>
<tr>
<td>6.11 (b)</td>
<td>Results of third test – E</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASNT</td>
<td>American Society for Nondestructive Testing</td>
</tr>
<tr>
<td>C/A-code</td>
<td>Coarse/Acquisition Code</td>
</tr>
<tr>
<td>CC</td>
<td>Control Centre</td>
</tr>
<tr>
<td>CRS</td>
<td>Core Reference Station</td>
</tr>
<tr>
<td>CSP</td>
<td>Control Station Processing</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>DoD</td>
<td>United States Department of Defence</td>
</tr>
<tr>
<td>DOP</td>
<td>Dilution of Precision</td>
</tr>
<tr>
<td>FBG</td>
<td>Fiber Bragg Grating</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Domain Decomposition</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method / Modelling</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transformation</td>
</tr>
<tr>
<td>FIG</td>
<td>International Federation of Surveyors</td>
</tr>
<tr>
<td>GGA</td>
<td>GPS fix information</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GT</td>
<td>Global Threshold</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LSE</td>
<td>Least Squares Estimation</td>
</tr>
<tr>
<td>NP</td>
<td>Normal Point</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric Synthetic Aperture Radar</td>
</tr>
<tr>
<td>IWST</td>
<td>Iterative Similarity Weighted Transformation</td>
</tr>
<tr>
<td>JUPEM</td>
<td>Department of Survey and Mapping, Malaysia</td>
</tr>
<tr>
<td>LT</td>
<td>Local Threshold</td>
</tr>
<tr>
<td>LGT</td>
<td>Lower Global Threshold</td>
</tr>
<tr>
<td>LLT</td>
<td>Lower Local Threshold</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input - Multiple Output</td>
</tr>
<tr>
<td>MINT</td>
<td>Malaysian Institute for Nuclear Technology Research</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NAVSTAR</td>
<td>Navigation Satellite Time and Ranging</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-Destructive Testing</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association 0183 Standard</td>
</tr>
<tr>
<td>NP</td>
<td>Normal Point</td>
</tr>
<tr>
<td>OP</td>
<td>Original Point</td>
</tr>
<tr>
<td>OTF</td>
<td>On-the-Fly</td>
</tr>
<tr>
<td>P-code</td>
<td>Precision code</td>
</tr>
<tr>
<td>PRN</td>
<td>Pseudo-Random Noise</td>
</tr>
<tr>
<td>PRC</td>
<td>Pseudo-Range Correction</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RRS</td>
<td>Reserved Reference Station</td>
</tr>
<tr>
<td>RTK</td>
<td>Real-Time Kinematic</td>
</tr>
<tr>
<td>SHM</td>
<td>Structural Health Monitoring</td>
</tr>
<tr>
<td>SPS</td>
<td>Standard Position Service</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol / Internet Protocol</td>
</tr>
<tr>
<td>TGO</td>
<td>Trimble Geomatics Office</td>
</tr>
<tr>
<td>TPS</td>
<td>Terrestrial Positioning System</td>
</tr>
<tr>
<td>TRS</td>
<td>Trimble Reference Station</td>
</tr>
<tr>
<td>TSIP</td>
<td>Trimble Standard Interface Protocol</td>
</tr>
<tr>
<td>UERE</td>
<td>User Equivalent Range Error</td>
</tr>
<tr>
<td>UHF</td>
<td>Ultra High Frequency</td>
</tr>
<tr>
<td>UGT</td>
<td>Upper Global Threshold</td>
</tr>
<tr>
<td>ULT</td>
<td>Upper Local Threshold</td>
</tr>
<tr>
<td>UM</td>
<td>Usage Monitoring</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
<tr>
<td>USACE</td>
<td>United State Army Corps of Engineers</td>
</tr>
<tr>
<td>VBA</td>
<td>Visual Basic for Applications</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VNC</td>
<td>Virtual Network Computing</td>
</tr>
<tr>
<td>WG 6.1</td>
<td>Working Group 6.1 on Deformation Measurements and Analysis</td>
</tr>
<tr>
<td>WGS84</td>
<td>World Geodetic System 1984</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

n_o - Fundamental natural frequency or period of a building

D - Base direction (in meters) in the direction of motion considered of the building

H - Height of the building (in meters)

C - Centre of mass of the earth

R - Position vector of the antenna to seek

r - Known position vector of satellite

ρ - True range from transmission at satellite to reception at receiver or antenna

y - Propagation of electromagnetic wave from the satellite to the receiver

A - Signal amplitude

k - Propagation wavenumber related to the free space wavelength

t - Elapsed time measured from the instant of transmission at the satellite

x - Distance travelled of the electronic wave from the satellite to the receiver

ω - Radian frequency

ϕ - Bias term

f_o - Fundamental frequency of GPS signal

p - Measured pseudo-range

c - Velocity of light

dt - Offset of the satellite clock from GPS time

dT - Offset of the receiver clock from GPS time

d_{ion} - Ionospheric delay

d_{trop} - Tropospheric delay

Φ - Measured carrier phase in length units

N - Unknown cycle count
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>σ_o</td>
<td>Measurement accuracy</td>
</tr>
<tr>
<td>σ</td>
<td>Positioning accuracy</td>
</tr>
<tr>
<td>R_E</td>
<td>Range error due to clock instability / timing biases</td>
</tr>
<tr>
<td>T_O</td>
<td>Time offset</td>
</tr>
<tr>
<td>D_C</td>
<td>Dry term range contribution in zenith direction in meters</td>
</tr>
<tr>
<td>P_O</td>
<td>Surface pressure in millibar (mb)</td>
</tr>
<tr>
<td>T_L</td>
<td>Local tolerance</td>
</tr>
<tr>
<td>T_G</td>
<td>Global tolerance</td>
</tr>
<tr>
<td>N</td>
<td>Meridian arc distance from reference station (of user-defined coordinate system used in Sparrow)</td>
</tr>
<tr>
<td>E</td>
<td>Arc distance along the parallel latitude from reference station (of user-defined coordinate system used in Sparrow)</td>
</tr>
<tr>
<td>h</td>
<td>Ellipsoidal height of antenna (of user-defined coordinate system used in Sparrow)</td>
</tr>
<tr>
<td>ϕ</td>
<td>Latitude of geodetic coordinate system</td>
</tr>
<tr>
<td>λ</td>
<td>Longitude of geodetic coordinate system</td>
</tr>
<tr>
<td>H</td>
<td>Antenna altitude of geodetic coordinate system</td>
</tr>
<tr>
<td>N_{geoid}</td>
<td>Geoidal separation</td>
</tr>
<tr>
<td>S_{ϕ}</td>
<td>Meridian arc distance</td>
</tr>
<tr>
<td>S_{λ}</td>
<td>Arc distance along the parallel latitude</td>
</tr>
<tr>
<td>R_M</td>
<td>Radius of curvature in meridian</td>
</tr>
<tr>
<td>R_N</td>
<td>Radius of curvature in the prime vertical</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Street, Drainage and Building Act 1974 (Act 133)</td>
<td>126</td>
</tr>
<tr>
<td>B</td>
<td>Enhancements of Data Processing, Algorithms or Software</td>
<td>129</td>
</tr>
<tr>
<td>C</td>
<td>Time Series of Sampled Forty-Eight-Hour Continuous MyRTKNet Data</td>
<td>135</td>
</tr>
<tr>
<td>D</td>
<td>National Marine Electronics Association 0183 Standard</td>
<td>147</td>
</tr>
<tr>
<td>E</td>
<td>Coordinate Conversion</td>
<td>149</td>
</tr>
<tr>
<td>F</td>
<td>Field Procedure and Testing of Sparrow</td>
<td>153</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Numerous accidents or disasters associated with large construction projects and natural events in the past have cost not only the great loss financially but also the lives that eternally embedded the great pain in the memory of their beloved family and friends. These horrendous tragedies include

(i) Sultan Abdul Halim Ferry Terminal Bridge collapse (July 31, 1988),
(ii) Highland Towers Condominium collapse (December 11, 1993),
(iii) Tsunami induced by the Indian Ocean earthquake (December 24, 2004), and
(iv) many other landslides, tremors as well as sudden collapse of the floor of a building during construction.

Further information on the abovementioned tragedies can be acquired at Wikipedia, (the free encyclopedia) and the study, entitled Non-Destructive Testing of Concrete and Civil engineering Structures, carried out by Malaysian Institute for Nuclear Technology Research (MINT). Besides, questions on whether our buildings are able to withstand the tremors have also been raised by the recent aftershocks caused by the earthquakes that struck the region. Further information on the discussion of the aftershocks can be reached at Property Times, the New Straits Times (2006).

These tragedies and aftershocks have awakened the public awareness and concern of the structure safety as well as natural event. Also, the need of monitoring has been called to serve as the alarm system or early-warning system. According to
aforementioned study carried out by MINT, it was reported that amendment had been made to Street, Drainage and Building Act 1974 (Act 133) as a follow up of the Highland Towers tragedy. The act requires that after every ten years all high-rise building of more than five floors must be inspected for their safety before the renewal of certificate of fitness can be made. The Section 85_A of the act is attached in Appendix A.

In usual practices, the non-destructive testing (NDT) or structural health monitoring (SHM) will be implemented to assess the damage in structure and examine the integrity of the structure in order to come to a conclusion of the useful life or serviceability of the structure. In general, NDT and SHM hold a same role which is to ultimately guarantee the safety of the public. A brief introduction on NDT as well as SHM and damage is given in the following.

The American Society for Nondestructive Testing (ASNT) define the NDT as comprising those test methods used to examine an object, material or system without impairing its future usefulness. The term is generally applied to nonmedical investigations of material integrity. Non-destructive testing is concerned in a practical way with the performance of the test piece, such as, how long may the piece be used and when does it need to be checked again. The British Institute of Non-Destructive Testing define the NDT as the branch of engineering concerned with all methods of detecting and evaluating flaws in materials of that the flaws can affect the serviceability of the material and structure.

Based on A Review of Structural Health Monitoring Literature: 1996-2001, SHM is defined as the process of implementing a damage detection strategy for aerospace, civil, and mechanical engineering infrastructure. Usage monitoring (UM) attempts to measure the inputs to and responses of a structure before damage so that regression analysis can be used to predict the onset of damage and deterioration in structural condition (further discussion on the inputs to and responses of structure is continued in Section 2.3.2. Prognosis is the coupling of information from SHM, UM, current environmental and operational conditions, previous component and system level testing, and numerical modelling to estimate the remaining useful life of the system (Sohn et al., 2003). Also, according to Summary Report on the first
International Workshop on Structural Health Monitoring, the essence of SHM technology is to develop autonomous built-in systems for the continuous real-time monitoring, inspection, and damage detection of structures with minimum labour involvement (Harb, 2005).

In the most general terms, damage can be defined as changes introduced into a system that adversely affects its current or future performance. Implicit in this definition is the concept that damage is not meaningful without a comparison between two different states of the system, one of which is assumed to represent the initial, and often undamaged, state. On the study of damage identification in structural and mechanical systems, the definition of damage therefore will be limited to changes to the material and/or geometric properties of these systems, including changes to the boundary conditions and system connectivity, which adversely affect the current or future performance of these systems (Sohn et al., 2003). Some of the examples of damage are shown in the Table 1.1 below.

<table>
<thead>
<tr>
<th>Damage</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack</td>
<td>Stiffness change</td>
</tr>
<tr>
<td>Scour</td>
<td>Boundary condition change</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Mass change</td>
</tr>
<tr>
<td>Joint loosening</td>
<td>Connectivity change</td>
</tr>
</tbody>
</table>

However, to have the comprehensive diagnosis of the structure health or prognosis of damage in detail, there are a number of different measurements that have to be made for instance (but are not limited to) strain, acceleration, temperature, transmission and displacement. Further classification on the measurement is discussed in Section 2.3.2 (Ad-Hoc Committee of FIG, 2001; Sohn et al., 2003). Nevertheless, the displacement measurement is the main concern of this thesis.

Basically, the displacement could be arrived at by two main approaches, namely geotechnical approach and geodetic approach. Geotechnical approach uses the special devices such as strain gauges, piezometers, tiltmeters, extensometers and
many others to obtain the required type of displacements. However, the geodetic approach uses the surveying positioning techniques to derive the displacement. Either geotechnical or geodetic approach, they can be employed to measure/monitor the displacement of the man-made structure (e.g. dam, high-rise building, bridge, tunnel, etc.) and natural features (e.g. slope and the areas encountering with landslide, subsidence, liquefaction, uneven settlement, mass movement, etc.).

The thesis focuses on the geodetic approach. The main difference of the geodetic approach is that it uses the surveying technique to provide the feedback of the response of the monitored object in term of position, which is, in turn, used to derive the displacement (magnitude and direction) as well as displacement speed (velocity). The derived displacement can be then described as deflection, settlement, drift and others. For this reason, displacement measurement is also comparable to deformation measurement.

Besides, in geodetic approach, there is also a number of positioning techniques that can be used to perform the displacement measurement, such as conventional terrestrial based method (by using theodolite or total station), global positioning system (GPS) and photogrametry (by using camera or scanner). However, GPS is the positioning technique to be looked into in this research.

Moreover, regardless to the positioning mode (absolute positioning or relative positioning), GPS positioning technique can be further divided into two different technique, namely, static positioning and kinematic positioning. Yet, the research focuses on the kinematic positioning with real-time solution or in short real-time kinematic (RTK) positioning technique.

Summing up all the comments abovementioned, in short, the main focus of the research scope is shown in the “reserve pyramid” in Figure 1.1.
Before continuing the discussion, some statements on the terms used in the thesis are advisable. Throughout the thesis, displacement and deformation are comparable. However, deformation measurement and deformation monitoring are not quite comparable. Deformation measurement is used to represent the quantitative measurement, whereas, deformation monitoring is used to represent the practice in the real scenario, inclusive of both deformation measurement and analysis.

1.2 Problem Statements

Back in the late of 1970s, the GPS technology was introduced when the first launch of the GPS satellite on February 22, 1978 (Leick, 2004). Since then, many industries have been benefited from the technology of GPS. Surveying industry has been no different. Researches have been (and are still) carried out and benefits have been (and are still) brought in. However, due to the expensive equipments (as compared to the conventional terrestrial surveying equipments), GPS technology is still fresh in Malaysian surveying industry. Only the education institutions and government departments have the regular practices. Furthermore, Malaysia, the country that has been gifted the advantageous geographical and geological location (e.g. free from earthquake and volcano), have no intensive practices in monitoring...
(structures as well as natural events). This also results the lack of proper reference or standard guideline for using GPS in deformation monitoring. Nevertheless, as it has been discussed in Section 1.1, there are, in truth, the needs of deformation monitoring in Malaysia.

Today RTK positioning technique is certainly one of the most valuable assets of GPS. Although many researches have suggest and proven the feasibility of using RTK positioning (examples are given in Section 2.5) in deformation monitoring, directly employing the manufacturers’ RTK positioning solution (the output obtained from the receiver) in deformation monitoring is doubtful. In other words, the possible errors (e.g. multipath and cycle slips) and reference station reliability that deteriorate the quality of RTK positioning are the main concern.

Besides, the main essence of RTK positioning is its advantage to provide the direct measurement of relative displacement and real-time measurement (online and offline application). Nevertheless, until latest, there is still very lack off-the-shelf online RTK positioning application, while offline RTK positioning solution does not offer the real time (on the spot) deformation monitoring. Real time deformation detection plays the prominent role in guaranteeing public safety.

Furthermore, automated and continuous monitoring is also the latest and in demand monitoring. This is because automated and continuous monitoring greatly levels the efficiency of deformation monitoring, such as, saving the manpower, reducing human gross error and handling the round-the-clock monitoring. However, the smart and handy applications have to be self developed or customized.

A reliable RTK positioning technique for deformation monitoring and a computer-aided approach to perform the online, automated and continuous deformation monitoring are the concern of the thesis.
1.3 Research Objectives

Based on the problem statements discussed in the previous section, the research objectives are as follows.

(i) To investigate RTK positioning integrity monitoring and deformation detection method to improve the direct employment of manufacturer’s RTK positioning technique for deformation monitoring system.

(ii) To enhance the employment of RTK positioning technique in deformation monitoring, particularly in online, automated and continuous deformation monitoring by developing prototype software.

1.4 Research Contributions

Parallel to the research objectives, the research has two significances as follows.

(i) An additional method for RTK positioning integrity monitoring (inclusive of RTK output quality and reference station stability) and deformation detection is proposed.

(ii) A prototype deformation monitoring system for automated, online and continuous monitoring scheme is developed. The prototype can be reference for structure deformation and landslide study that concerns the public safety in Malaysia.

The main difference between the research and other glorious and famous researches is that the research looks into an additional method for manufacturers’ RTK positioning solution which concerns the RTK integrity monitoring and deformation detection so that it can be employed directly for online, automated and continuous deformation monitoring. Algorithm development for processing raw GPS data to obtain the RTK solution for deformation monitoring is not in the scope of the research, yet, it is recommended for future work.
1.5 Research Methodology

The process of the whole research is summarised as shown in the flow chart in Figure 1.2.

![Flow Chart: Research Methodology]

- **Start**
- **Literature review:**
 To look for the appropriate scope of research that is relevant and significant to local needs.
- **Data sampling and analysis:**
 - To collect sample data so as to
 - i) look into the aptitude of RTK positioning,
 - ii) to propose the proper method for deformation monitoring (inclusive of RTK data monitoring), and
 - iii) verify the appropriateness of using the RTK positioning technique in deformation monitoring.
- **Prototype software development:**
 To develop prototype software based on the findings of the research and to serve the purposes of automated, online and continuous deformation monitoring.
- **Simulation test:**
 To justify the findings of the research and test the technical feasibility of the developed prototype software.
- **Conclusion and recommendations:**
 To conclude the research and to give the recommendations to the future works.
- **End**

Figure 1.2: Research methodology.
1.6 Outline of the Thesis

The thesis consists of seven chapters and six appendixes.

Chapter 1 gives the introduction to the research by delivering the background of the research, problem statements, research objectives, research contributions, research methodology as well as structure of the thesis.

Chapter 2 peruses the development of deformation monitoring (global development of deformation monitoring, classification of deformation models and terminology, and classification of monitoring schemes) and the employment of GPS in deformation monitoring (scientific justification and technical feasibility, competency of RTK positioning in deformation monitoring, and state-of-the-art deformation monitoring system).

Chapter 3 discusses the fundamental of GPS positioning as well as RTK positioning technique. The chapter begins the discussion from the basic of satellite positioning until the scope of RTK positioning, that include GPS signal structure, GPS ranging, and GPS positioning mode, absolute positioning, relative positioning, and kinematic positioning.

Chapter 4 discusses the GPS accuracies, error and bias sources, and augmentation options so that they can be referenced in the following chapters.

Chapter 5 presents the results of sampled data, and proposes an additional method for RTK positioning integrity monitoring (error identification, outlier filtering and reference station stability checking) and deformation detection.

Chapter 6 describes the developed prototype software, Sparrow. The description includes the Sparrow briefing, software design, software structure and software functionalities. Besides, three tests to verify the applicability of Sparrow and validity of Normal Point (NP) are included.
Chapter 7 gives the concluding remarks of the research as well as the recommendations to the future works.

Appendix A attaches the Section 85A from the Street, Drainage and Building Act 1974 (Act 133).

Appendix B attaches four examples of enhancements of data processing, algorithms or software.

Appendix C presents the results of sampled forty-eight-hour continuous RTKNet data.

Appendix D elucidates the National Marine Electronics Association (NMEA) 0183 Standard.

Appendix E discusses the conversion from geodetic coordinate system to the user-defined coordinate system used in the research.

Appendix F describes the field procedure of using Sparrow as well as process and result of the tests for the developed prototype software.