THE INTEGRATION OF QUALITY MANAGEMENT SYSTEM
IN CONSTRUCTION INDUSTRY

LYDIA NYOMEK

A project report submitted in partial fulfillment
of the requirements for the award of the degree of Master in Science
(Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL, 2010
ABSTRAK

ABSTRACT

Malaysian construction industry is facing problems to assure the construction quality due to the increasing demand in quality of delivered product. Therefore, Malaysian construction industry must impose on higher quality product to compete aggressively both at regional or international industry. The concept of quality management system has been introduced to the construction industry to control the product quality and continually improve the effectiveness and efficiency of its performance. The main thrust of a quality management system is to define the processes that will lead to the quality of end result or product. However, the implementation of quality management system is often treated independently within an organization and this contributes to the limitation of the system. With regards to the current system that has been implemented independently, the concept of integrated quality management system is introduced. Integrated quality management system is a combination of various quality management systems such as Environmental Management System and Occupational Safety and Health Management System into one coherent management system. The main aim of this study is to review the potential of applying integrated management system to construction industry. The methodologies adopted for this study are interviews with expert panel, conducting case studies and questionnaire survey. Hence, the results of study are important for the construction industry that wishes to enhance their end product quality and performance. It is found that there is a strong potential in applying integrated quality management system. Indeed this study has found that there are few construction companies have implemented this integrated system. The main challenges for applying this system are higher initial cost and lack of understanding of the concept.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Aim and Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Scopes and Limitations</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Brief Research Methodology</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>CONCEPT OF QUALITY MANAGEMENT SYSTEM</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Quality Management History and Gurus</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Quality Management Gurus</td>
<td></td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Early 1950’s Americans who took the messages of Quality to Japan</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Late 1950’s Japanese who developed new concepts in response to the Americans</td>
<td>12</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>1970’s-1980’s Western gurus who followed the Japanese industrial success</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Basic Concept of Quality, Quality Dimensions and Parameters</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Quality Dimensions</td>
<td>19</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Quality Parameters</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic Concept of Quality Management System</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Quality Management System</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Quality Control</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Quality System</td>
<td>25</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Quality Assurance</td>
<td>25</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Total Quality Management (TQM)</td>
<td>27</td>
</tr>
</tbody>
</table>
3 BASIC CONCEPT OF INTEGRATED QUALITY MANAGEMENT SYSTEM

3.1 Introduction 30

3.2 Integration of Management System 31

3.2.1 Quality Management System Concept 33

3.2.1.1 Management Responsibilities 34

3.2.1.2 Planning 34

3.2.1.3 Resource Management 35

3.2.1.4 Construction Process Control 36

3.2.1.5 ISO9001 Standard Guidelines for Quality Management System 37

3.2.2 Environmental Management System Concept 38

3.2.2.1 Environmental Policy 39

3.2.2.2 Planning 40

3.2.2.3 Implementation and Operation 41

3.2.2.4 Checking and Corrective Action 41

3.2.2.5 Management Review and Continual Improvement 41

3.2.2.6 ISO14001 Standard Guidelines for Environmental Management System 42

3.2.3 Occupational Safety and Health Management System Concept 43

3.2.3.1 Occupational Safety and Health Policy 43

3.2.3.2 Planning and Implementing 43

3.2.3.3 Measurement and Evaluation 44

3.2.3.4 Management Review 45

3.2.3.5 ISO18001 Standard Guidelines for Occupational Safety and Health Management System 45
4 RESEARCH METHODOLOGY

4.1 Introduction 46
4.2 Literature Review 46
4.3 Interview with Expert Panels 47
4.4 Questionnaire Survey 49
 4.4.1 Questionnaire Survey 49
4.5 Development of Conceptual Framework 50
4.6 Data Analysis 51
 4.6.1 Frequency Analysis 51
 4.6.2 Average Index 51

5 DATA ANALYSIS

5.1 Introduction 53
5.2 Interview Questions 54
 5.4.1 Implementation of current Quality Management System 54
 5.4.2 Current Management System Effectiveness in Improving Company Performance 56
 5.4.3 Company Concern on Implementing Quality Control Management System in Construction Stage 59
 5.4.4 Best Strategy to achieve effectiveness in implementation of Quality Control Management System 61
 5.4.5 Challenges faced by company when implementing the current management system 64
 5.4.6 Perception on Integration of Quality Management System 67
 5.4.7 Perception on Advantages of the Integrated Management System 70
5.4.8 Challenges to achieve the Concept of Integration Quality Management System 72

5.3 Questionnaire Survey 75

5.3.1 Background Study of the Respondents (Section A) 75

5.3.2 Integration of Quality Control Management System (Section B) 78

5.3.2.1 The elements in Quality Control Management System 81

5.3.3 Implementation of Integration Management System (Section C) 95

5.3.4 Benefits and Challenges of Integration Management System 100

6 INTEGRATION OF QUALITY MANAGEMENT SYSTEM: CASE STUDY

6.1 Introduction 104

6.2 Case Study Background 104

6.2.1 Putrajaya 4G10 105

6.2.2 Putrajaya 4G11 106

6.2.3 Putrajaya P17 106

6.3 Concept of Integrated Quality Management System 107

6.3.1 Top Management Responsibilities 107

6.3.1.1 Top Management Commitment in Establishing Organization Policy, Objectives and Targets 107

6.3.1.2 Strive for Customer Requirements 108

6.3.1.3 Establishment of Quality Policy 108

6.3.1.4 Effective Quality Management System Planning 109
6.3.1.5 Responsibility, authority and effective communication
6.3.1.6 Management Review

6.4 Resource Management
6.4.1 Provision of Resources
6.4.2 Human Resources
6.4.3 Availability of Infrastructure
6.4.4 Good Working Environment

6.5 Product Realization
6.5.1 Planning of Product Realization
6.5.2 Customer Related Process
6.5.3 Design development
6.5.4 Procurement
6.5.5 Production and service provision
6.5.6 Control of monitoring and measuring equipment
6.5.7 Communication, Participation and Consultation
6.5.8 Operation Control for Environment, Safety and Health
6.5.9 Emergency Preparedness and Response Plan
6.5.10 Incident Investigation

6.6 Measurement, Analysis and Improvement
6.6.1 Monitoring and Measurement Tool
6.6.2 Monitoring and Measurement of Environmental, Safety and Health Performance
6.6.3 Evaluation of Environmental, Safety and Health Compliance
6.6.4 Control of Nonconforming Product

6.7 Control of Non-Conforming Product, and Environmental, Safety and Health Non-Conformities

6.8 Data Analysis
6.9 Improvement
6.9.1 Corrective Action for Nonconforming Product 145
6.9.2 Preventive Action to Eliminate Nonconforming 146

7 RESEARCH FINDINGS
7.1 Current Quality Management System for Construction Project 147
7.2 ISO Quality Standard 148
7.3 Concept of Integration Management System 148
7.4 Conceptual Framework of Integrated Quality Management System 151
7.5 Evaluation on Integrated Quality Management System 154
7.6 Benefits Implementing Integration Management System 156
7.6 Challenges in Implementing the Integration Management System 159

8 CONCLUSION AND RECOMMENDATION
8.1 Conclusions 161
8.2 Recommendations 163

REFERENCES 164

APPENDICES 167
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Seven Basic Tools of Quality</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Quality Dimension (Garvin, 2000)</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Nine Different Quality Dimension (Besterfield, 2001)</td>
<td>20</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Quality Management System (Based on ISO9001 Standard Guidelines)</td>
<td>37</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Environmental Management System (Based on ISO14001 Standard Guidelines)</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Occupational Safety and Health Management System (Based on ISO18001 Standard Guidelines)</td>
<td>45</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Background Study of the Interviewees</td>
<td>48</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Data Analysis on Interviewee answer for Interview Question no. 1</td>
<td>55</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Type of Management System Breakdown</td>
<td>56</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Tabulation on Interviewees Perception on Interview Question no. 2</td>
<td>57</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Summary of the Effectiveness of Current Quality Management System</td>
<td>58</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Tabulation on Interviewees Answer on Interview Question no. 3</td>
<td>59</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Interviewees answer on Interview Question no. 5</td>
<td>62</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Summary of Interviewees Answer on Interview Question no. 5</td>
<td>62</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Interviewees answer on Interview Question no. 7</td>
<td>65</td>
</tr>
</tbody>
</table>
Table 5.9 Summary of Interviewees Answer on Interview
Question no. 7 66
Table 5.10 Interviewees answer on Interview Question no. 9 68
Table 5.11 Summary of Interviewees Answer on Interview
Question no. 9 69
Table 5.12 Interviewees answer on Interview Question no. 10 71
Table 5.13 Summary of Interviewees Answer on Interview
Question no. 10 72
Table 5.14 Interviewees answer on Interview Question no. 11 74
Table 5.15 Summary of Interviewees Answer on Interview
Question no. 11 75
Table 5.16 Type of Company 75
Table 5.17 Classification of Implemented Current Management
System 76
Table 5.18 Type of ISO Certification 77
Table 5.19 Personal Involvement in Integration Quality
Control Management System Implementation 78
Table 5.20 General Requirements 82
Table 5.21 Document Requirements 83
Table 5.22 Management Responsibilities 85
Table 5.23 Planning 88
Table 5.24 Resource Management 89
Table 5.25 Product Realization 91
Table 5.26 The efficiency of Current Management System 95
Table 5.27 The Similarity Between Current Quality Management
System With Integrated Quality Management System 96
Table 5.28 The Comparison Between the Effectives of Current
Quality Management System with Integrated Quality Management System 97
Table 5.29 Integration of Management System 98
Table 5.30 Integrated Quality Management System as one of the
Approaches to Total Quality Management

Table 5.31 Benefits of Integration System

Table 5.32 Challenges in Implementing the Integration Management System

Table 7.1 Integrated Quality Management System Concept

Table 7.2 Quality Management System, Environmental Management System and Occupational Safety and Health Management System in Deming’s PDCA cycle

Table 7.3 Conceptual Framework of Integrated Quality Management System

Table 7.4 Element in Integration Management System

Table 7.5 Respondents’ Evaluation on Integrated Quality Management System Elements

Table 7.6 Benefits gain from Integrated Quality Management System

Table 7.7 Challenges in implementing Integrated Quality Management System

Table 7.8 Similarity Between Interviewees and Respondents Perception on Challenges in Implementing the Integrated Quality Management System with Information Gained from Literature Review
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Brief Work Sequence on Research Methodology</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Deming’s Cycle</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Dr. Joseph M. Juran Quality Trilogy</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Ishikawa Diagram</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Taguchi Methodology</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Relationship of Total Quality Management Core</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Quality management system model</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(Abdul Rahim, 2004)</td>
<td></td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Environmental Management System model</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(Abdul Rahim, 2004)</td>
<td></td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Occupational Safety and Health Management System model</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(Abdul Rahim, 2004)</td>
<td></td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Percentage Diagram of Interviewees Answer on Interview Question no.3</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Classification on type of company</td>
<td>76</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Awareness and understand the management system</td>
<td>78</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Responsibility in the management system</td>
<td>79</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Participation for continual improvement</td>
<td>80</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Standard of compliance in work</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Frequency Analysis of General Requirements</td>
<td>82</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Frequency Analysis of Document Requirements</td>
<td>84</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Frequency Analysis of Management Responsibilities</td>
<td>86</td>
</tr>
</tbody>
</table>
Figure 5.10 Frequency Analysis of Planning
Figure 5.11 Frequency Analysis of Resource Management
Figure 5.12 Frequency Analysis of Product Realization (I)
Figure 5.13 Frequency Analysis of Product Realization (II)
Figure 5.14 Frequency Analysis of Product Realization (III)
Figure 5.15 Percentage on the Effectiveness of Current Management System
Figure 5.16 Percentage of Similarity in Current Quality Management System and Integration Quality Control Management System
Figure 5.17 Percentage on Comparison in Effectiveness of the Management Systems
Figure 5.18 Percentage of Integration Quality Control Management System
Figure 5.19 Percentage of Integration Quality Control Management System towards Total Quality Management System
Figure 5.20 Frequency Analysis of Integration Quality Control Management System Benefits
Figure 5.21 Frequency Analysis of Challenges in Implementing Integration Quality Control Management System
Figure 6.1 Quality Management System Model
Figure 6.2 Tendering Process and Pre-construction/Planning Process
Figure 6.3 Summary of Planning of Product Realization and the Output
Figure 6.4 Design development work process
Figure 6.5 Procurement and Construction Work Process
Figure 6.6 Production and Services Provision Work, Control Monitoring and Measurement Process
Figure 6.7 Measurement, Analysis and Improvement Work
Process 138
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDMS</td>
<td>Electronic Document Management System</td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organization</td>
</tr>
<tr>
<td>JKKP</td>
<td>Jabatan Keselamatan dan Kesihatan Pekerja</td>
</tr>
<tr>
<td>JKR</td>
<td>Jabatan Kerja Raya</td>
</tr>
<tr>
<td>OSHMS</td>
<td>Occupational Safety and Health Management System</td>
</tr>
<tr>
<td>QMS</td>
<td>Quality Management System</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Questionnaire Survey</td>
<td>167</td>
</tr>
<tr>
<td>B</td>
<td>Questionnaire</td>
<td>174</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Currently, the construction industry is being viewed as poor quality emphasis compared to other sectors (Kubal, 1994; Kanji and Wong, 1998; Wong and Fung, 1999). Therefore, many criticisms have been directed to construction industry for the poor workmanship of the end product and not worth the money value. Rowlinson and Walker (1995) stated that the construction industry is also characterized by its non-standardisation. Besides that, over the decades, the construction industry has had raised serious concerns about the construction activities contribution towards the environmental impacts. The concerns are raised due to the increasing in global environmental awareness among the community. It is estimated about 40% of the materials entering the world’s economy each year and 25% of the world’s usage of wood (Kein, 1999). Besides, site construction also produces atmospheric pollutants and negligence of construction sites may result in spillage of substances which are washed away into water sources.

Unfortunately, nowadays, there are many obstacles faced by construction projects. It is normal for construction projects to experience extensive delays,
exceeded initial or estimated cost and the most vital is the workmanship quality (Odeh, 2001). These days, clients are more knowledgeable and conscious on the quality of work and it is very challenging task to deliver the quality that would satisfy the client’s standard (Torbica and Stroh, 2001). Construction industry also facing problems to assure the construction quality because of the nature of operation is complicated (Kanji and Wong, 1998). The construction industry consists of a multitude of occupations professions and organizations (Sommerville, 1994). They are involved in different phases of construction and each one play a different role in delivering a quality project. Failure of any of the parties will affect the quality of the final project (Kanji and Wong, 1998).

Construction industry also has gained the reputation of being a highly hazardous industry due to the high incidence of accidents and fatality rates (Ahmadon et al, 2006). Occupational Safety and Health (OSH) at work is an issue that affecting all business especially in construction industry where the major issue for the companies mainly due to the fear of prosecution. Consequently, the betterment of safety and health in construction industry goal and in the processes is vital to provide safer workplaces, improve productivity accompanied by reduced costs, better time performance and increase profitability (Ahmadon et al, 2006). As in construction management field, there are several standard of management systems such as ISO9001 for Quality System, ISO14001 for Environmental System and OHSAS18001 for Occupational Safety and Health Management System where the management systems are treated independent functions within organizations to ensure all the aspects and organization’s purpose are met. However, many professionals believe that these systems should be harmonized ultimately in some manner. The integrated management system will integrates all components in construction into one coherent business to enable achievement of its purpose and mission focusing on quality, environment, safety and health.
1.2 Problem Statement

Apparently, the standard of Malaysian construction industry is still arguable and below the expectation compared to international construction industry. Although the construction industry has implemented a few types of management system such as quality management system, environmental management system, safety and health management system, total quality management system and others, still the end product delivered by the construction industry not up to client’s expectation. Applying the current management systems independently only could improve a few construction impacts but by integrating the current management system, it will open wide all the vital construction components that needs to be taken into consideration and will gained a long term benefits. In order to ensure the construction activities always deliver a quality end product with less impact towards the community, quality, environment, safety and health management system must be implemented in an organization. These are the four cornerstones of a functional management system and the organization must equally focus on these systems. If the managers and employees are focus on only one of these systems, the performance of the management system may suffer (Holdsworth, 2003). Unfortunately, Malaysian construction industries are short of documented management systems which can interrelated the aspects of quality, environmental, safety and health. On the other hand, an organization also can no longer afford to have a staff that specialist to address everything on specific management system.

1.3 Aim and Objectives of Study

The main aim of this study is to review the potential of applying integrated quality management systems for construction. The objectives of the study are as follow:
(i) To investigate the quality management system practice in Malaysian construction industry.

(ii) To investigate the potential of applying the concept of integrated quality management system for construction project.

(iii) To determine the challenges in achieving the integrated quality management system for construction industry.

1.4 Scope and Limitation

The study is limited within the following scopes:

(i) The case study conducted for integrated management system is confined within design and build project in Putrajaya area only.

(ii) The questionnaire survey was distributed to the respondents involved in the construction project selected for the case study only.

1.5 Brief Research Methodology

The research methodologies done in this study are shown briefly in Figure 1.1.
Problem Statement

Objective 1: To investigate the quality management system practice in Malaysian construction industry.

Objective 2: To investigate the potential of applying the concept of integrated quality management system for construction.

Objective 3: To determine the challenges in achieving the integrated quality management system.

Literature Review:
1. History of quality management system
2. Concept of current quality management system
3. Standard requirement of quality management system
4. Concept of integrated quality management system

Methodology 1: Interview with expert panels
1. To review current practice of quality management system in Malaysian construction industry.
2. To review opinion on integrated quality management system
3. To review potential of implementing integrated management system
4. To review on benefits and challenges in implementing quality management system

Methodology 2: Case Study
1. To review the application of integrated quality management system in 3 selected project in Putrajaya.
2. Determine the benefits and challenges implementing the integrated quality management system.
3. Questionnaires has been set as main tool to collect date for case study apart from documented search.

Development of conceptual framework of integrated quality management system

Writing up and conclusion

Figure 1.1: Brief Research Methodology
REFERENCES

Griffith, A. & Howarth, T.; (2001); *Construction Health and Safety Management*; Longman; U.K.

Jaafar, M.J.; (June 2002); *Consideration In The Development of HSE Management Systems In the Malaysian Context*; paperwork for Mini Symposium; NIOSH, Malaysia.

