PRODUCT DESIGN IMPROVEMENT THROUGH DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA) AND THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ)

AFZAN BINTI ROZALI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical – Advanced Manufacturing Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

MAY 2010
To my beloved parents. Thank for all your support.
ACKNOWLEDGEMENT

Firstly, I would like to give all the praise to the Almighty Allah for the goodness that He had given to us and to all of the human beings. For Him, I have been able to complete my project successfully, *Alhamdulillah.*

And, I would like to express my deepest gratitude and appreciation to our beloved project supervisor, Dr Ariffin bin Haji Abdul Razak, for his valuable guidance throughout the completion of this project. Needless to say, it was his guidance and support that made my project time period much more beneficial and insightful into the engineering working environment.

I would like to thanks, Pn Sharifah Zainaf bte Wan Abu Seman, for the valuable discussion and supports. Your help is undeniable grateful.

Special credit to all my classmates of Kolej Kemahiran Tinggi MARA Balik Pulau, for spending their precious time advising and contributing ideas during product improvement is being conducted.

Finally, I would like to thank my sisters and all those unmentioned that have helped me in various ways, direct or indirectly. May Allah bless you all.
The goal of this project is to improve product design of consumer product by integrating Boothroyd Dewhurst Design for Manufacture and Assembly (DFMA) methodology with a Russian Theory of Inventive Problem Solving (TRIZ). The outcome of previous research has shown integrating several design tools has improved the reliability and reduce cost of the product.

A consumer product was selected as a case study to evaluate the integration of both design tools. The Boothroyd Dewhurst Design for Manufacture and Assembly Methodology (DFMA) is used as a quantitative improvement tools. The powerful tool can reduce parts number of a product and is expressed in percentage. While, the Russian Theory of Inventive Problem Solving (TRIZ) is used to improve the design qualitatively.

The results show that the integration of these tools can be a very powerful design tool for product design engineers in reducing cost by eliminating unnecessary parts while improving the ease of user handling and reliability of the consumer product.

Hasil kajian menunjukkan bahawa penggabungan kedua-dua alat rekacipta boleh menjadi sangat berkesan untuk jurutera pereka bentuk produk dalam menurunkan kos melalui pengurangan jumlah bahagian sambil memperbaiki kemudahan pengendalian barangan pengguna.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction to Problem</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Background of Research</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Problem statement</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Objective of Project</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Scopes of Project</td>
<td>3</td>
</tr>
<tr>
<td>1.6</td>
<td>Significant of Research</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>Methodology of Study</td>
<td>4</td>
</tr>
<tr>
<td>1.8</td>
<td>Summary</td>
<td>7</td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW ON DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA)
2.1 Introduction 8
2.2 Design for Manufacture and Assembly (DFMA) 9
 2.2.1 Lower Assembly Cost 10
 2.2.2 Shorter Assembly Time 10
 2.2.3 Increased Reliability 10
 2.2.4 Shorter Total Time-To-Market 10
2.3 Summary 12

3 LITERATURE REVIEW ON THEORY OF INVENTIVE PROBLEMS SOLVING (TRIZ)
3.1 Introduction 13
3.2 Four Pillars of TRIZ 18
 3.2.1 Contradictions 18
 3.2.1.1 Separation in Time 19
 3.2.1.2 Separation in Space 19
 3.2.1.3 Separation between Parts and the Whole 19
 3.2.1.4 Separation upon Condition 20
 3.2.2 Ideality 23
 3.2.3 Use of Resource 24
 3.2.4 Functionality 24
 3.2.4.1 The transition from rigid to flexible to wave technology 25
 3.2.4.2 The transition from mechanical to thermal to chemical to electronic to electromagnetic fields of energy application 25
3.3 Summary 26
4

BOOTHROYD DEWHURST DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA) METHODOLOGY

4.1 Introduction
27

4.2 Boothroyd Dewhurst DFA Methodology
28

4.3 Boothroyd Dewhurst DFMA Principles
28
 4.3.1 Minimize Part Count
29
 4.3.2 Make Parts Multi-Functional
30
 4.3.3 Reduce the Number of Screws and Screw Types
31
 4.3.4 Facilitate Parts Handling
31
 4.3.4.1 Size / Thickness
32
 4.3.4.2 Weight
32
 4.3.4.3 Nestling / Tangling
32
 4.3.4.4 Flexibility
33
 4.3.4.5 Fragility
33
 4.3.4.6 Slipperiness / Stickiness
33
 4.3.5 Use Standard Parts and Hardware
34
 4.3.6 Encourage Modular Assembly
35
 4.3.7 Use Stack Assemblies
35
 4.3.8 Design Parts With Self-Locating Features
35
 4.3.9 Minimize Number of Surfaces
36
 4.3.10 Assemble in the Open
36
 4.3.11 Simplify and Optimize the Manufacturing Process
37
 4.3.12 Eliminate Interfaces
38
 4.3.13 Design for Part Interchangeability
39
 4.3.14 Design Tolerances to Meet Process Capability
39
 4.4 Part Symmetry
40
 4.5 Summary
42
5 THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ) METHODOLOGY

5.1 Introduction 44
5.2 TRIZ Methodology 44
 5.2.1 Identify functions 44
 5.2.2 Contradictions 45
 5.2.3 Look up principle numbers in the matrix 46
 5.2.4 Look up principles 47
 5.2.5 Use resources to apply the principles 47
5.3 TRIZ 40 Principles 48
5.4 Summary 55

6 COMBINED DFMA AND TRIZ METHODOLOGY

6.1 Introduction 56
6.2 A structured DFMA and TRIZ method 57
6.3 Summary 60

7 QUANTITATIVE DESIGN IMPROVEMENT USING DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA)

7.1 Introduction 61
7.2 Case Studies 62
 7.2.1 Introduction 62
 7.2.2 Analyze the design for assembly efficiency 63
 7.2.3 Critique the design from an assembly point of view 66
 7.2.4 Redesign the part for improved assembly operations 74
7.3 Calculation of Design Efficiency 78
7.4 Summary 82
QUALITATIVE DESIGN IMPROVEMENT USING RUSSIAN THEORY OF INVENTIVE PROBLEM SOLVING (TRIZ)

8.1 Introduction

8.2 Case Study

8.2.1 Application of TRIZ

1. **8.2.1.1 Contradictions**
2. **8.2.1.2 Look up principle numbers in the matrix**
3. **8.2.1.3 Look up principles**
4. **8.2.1.4 Use resources to apply the principles**

8.3 TRIZ design improvement

8.4 Summary

RESULTS AND DISCUSSION

9.1 Introduction

9.2 Results

9.3 Discussion

9.4 Summary

CONCLUSIONS

10.1 Introduction

10.2 Recommendations for Future Work

REFERENCES

APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>40 inventive contradiction principles of TRIZ</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>39 Parameters of TRIZ</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Boothroyd Dewhurst DFMA Principles for mechanical design</td>
<td>29</td>
</tr>
<tr>
<td>5.1</td>
<td>Contradiction Table for Parameter 21 by 1</td>
<td>46</td>
</tr>
<tr>
<td>7.1</td>
<td>Numbering of each part</td>
<td>65</td>
</tr>
<tr>
<td>7.2</td>
<td>Dimension and orientation of insertion of each part</td>
<td>67</td>
</tr>
<tr>
<td>7.3</td>
<td>The critique of design of each part from an assembly point of view</td>
<td>69</td>
</tr>
<tr>
<td>7.4</td>
<td>The improvement of design of Price Label Exit Guide</td>
<td>75</td>
</tr>
<tr>
<td>7.5</td>
<td>The improvement of design of Gear Shield</td>
<td>76</td>
</tr>
<tr>
<td>7.6</td>
<td>The improvement of design of Stamped Price Label Feeder Roller Stand</td>
<td>77</td>
</tr>
</tbody>
</table>
7.7 The design for assembly worksheet of original design 79

7.8 The design for assembly worksheet of improved design 81

8.1 The contradiction of identified problem 87

8.2 (a) The contradiction of identified problem of Price Label Rest 88

8.2 (b) The contradiction of identified problem of Base Cover Clip 89

8.2 (c) The contradiction of identified problem of Side Covers 89

8.2 (d) The contradiction of identified problem of Price Label Horizontal Align 89

8.2 (e) The contradiction of identified problem of Handle 90

8.3 The Design for Assembly Worksheet of Old Design through TRIZ 93

8.4 The Design for Assembly Worksheet of Improved Design through TRIZ 94

9.1 The Design Efficiency of the three design stages 97

10.1 The Time Reduction 108

10.2 Summary of Degree of Improvement through DFMA 109

10.2 Summary of Degree of Improvement through DFMA and TRIZ 109
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Methodology of Study</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Four basic structure of TRIZ</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Four Pillars of TRIZ</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>Alpha and beta rotational symmetry for various parts</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of symmetry on the time required to handle a part</td>
<td>42</td>
</tr>
<tr>
<td>7.1</td>
<td>Kano Price Labeller</td>
<td>62</td>
</tr>
<tr>
<td>7.2</td>
<td>The main parts of the Price Labeller</td>
<td>64</td>
</tr>
<tr>
<td>7.3</td>
<td>Product tree structure of Price Labeller</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFMA</td>
<td>Design for Manufacture and Assembly</td>
</tr>
<tr>
<td>TRIZ</td>
<td>Theory Inventive Problem Solving</td>
</tr>
<tr>
<td>D.E</td>
<td>Design efficiency</td>
</tr>
<tr>
<td>TM</td>
<td>Total manual assembly time</td>
</tr>
<tr>
<td>CM</td>
<td>Total cost of manual assembly</td>
</tr>
<tr>
<td>NM</td>
<td>Theoretical minimum number of parts</td>
</tr>
<tr>
<td>No.</td>
<td>Number</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha rotational symmetry</td>
</tr>
<tr>
<td>β</td>
<td>Beta rotational symmetry</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Kano Price Labeller User Manual</td>
<td>112</td>
</tr>
<tr>
<td>B</td>
<td>Boothroyd Dewhurst Manual Handling Table</td>
<td>114</td>
</tr>
<tr>
<td>C</td>
<td>Boothroyd Dewhurst Manual Insertion Table</td>
<td>115</td>
</tr>
<tr>
<td>D</td>
<td>TRIZ Contradiction Table</td>
<td>116</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction to Problem

The significant demands made on engineers to reduce assembly time, improve performance and reliability at a reduced cost requires the ability to improve the design of the existing product. It necessitates the improvement of the existing design to reduce the number of parts and ease of user handling. In addition, the improved design needs to be performing the same function or more with ease of assembly, reduce in cost and ease of handling.

1.2 Background of Research

Engineering product design and improvement are crucial tools to provide reliable performance with a minimum numbers of parts and minimum production cost. In engineering production area, the constraints of the existing product are nearly always associated with the number of parts and assembly time. In the design of consumer product, increases in number of parts are closely related to cost of the
product. In order to compete with other, the manufacturer needs to manipulate the selling price of their product and offer more reliable and better functioning product. In suit to the reduced in selling price, the manufacturer must reduce the cost. In addition, survival of a consumer product relies on the ease of product handling and more practical.

The evaluation on a selected consumer product will be used to support this premise and examples the use of techniques to aid the definition of the design problem and control the premature criticism of the design concept.

1.3 Problem Statement

It is crucial to improve the design of products, reducing costs, improving quality and gaining competitive advantage. As the basis of competition has now shifted significantly towards the quick delivery of more and more innovative products manufacturers are looking for ways to enhance their technical innovation and creative problem solving techniques without losing control over product cost and quality.

Most product manufacture problems faced are designing parts that are hard to manufacture. Manufacture difficulties will increase the manufacturing and fabrication cost. An increase in cost will directly raise the selling price.

Another common product manufacture problems faced are wrong parts material chosen. Unsuitable material will affect the performance of the product. While using superior materials than the part should be will increase the material cost.
Parts face difficulties during assembly are another root cause of product manufacture problems. Difficulties during assembly will increase the assembly time and so the cost. Many designs require more than necessary number of parts to perform its functions. Malfunction parts will increase assembly time should be eliminated.

The reliability of product is the supplementary to the product shelf lifetime. So the improvement in design should in consideration of the product reliability and serve the consumer more practical and functioning product but still a lower price.

1.4 Objective of Project

The objective of this project is to improve product design through Design for Manufacture and Assembly (DFMA) methodology and Theory of Inventive Problem Solving (TRIZ) approach.

1.5 Scopes of Project

Scopes of this project are limited to:

i. Application of Boothroyd Dewhurst Design for Manufacture and Assembly (DFMA) methodology in product assembly time as quantitative improvement on product design problem using manual assembly
ii. Integrate the quantitative improvement by Boothroyd Dewhurst DFMA to qualitative improvement by Theory of Inventive Problem Solving (TRIZ)

iii. Integration for improvement on mechanical part of a selected consumer product as case study assuming using manual assembly

1.6 Significant of Research

The research finding shall be indispensable of improving the existing product design in terms of cost, minimize parts numbers and ease of handling. The capability of Boothroyd Dewhurst DFMA methodology should help product design engineer to increase product design efficiency. Additional Theory Inventive Problem Solving (TRIZ) strategies should usefully deploy to qualitatively enhance Boothroyd Dewhurst DFMA capability.

With the application of DFMA and TRIZ methodology this research will benefits design engineering as a guide on how to apply this two powerful design tools for a more reliable and better functional products at a lower cost. This will indirectly benefit the consumer and the environments.

1.7 Methodology of Study

The methodology of study begins with literature review on both design tools DFMA and TRIZ. The scrutinized on the combination of these two tools on previous researches are also conducted to see the effectiveness of design improvement.
A consumer product is selected after a clear view on the application of latter tools. The selected product is firstly analysed using DFMA methodology. Then, by application of DFMA, a better design is proposed.

The improved design through DFMA is then again improved by integrating with TRIZ. The Design Efficiency of DFMA methodology is used to evaluate the latest improved design.

The Design Efficiency is used as a quantitative tool and stressed upon discussion and conclusion of the finding.
Figure 1.1: Methodology of Study

1. Start
2. Problems discovery
3. Integration of DFMA and TRIZ
4. Select a consumer product as case study
5. Evaluate each part of the product through DFMA methodology
6. Develop the DFMA worksheet of original design
7. Identify part that can be considered for improvement, combine or eliminate
8. Develop the DFMA worksheet of improved design
9. Identify part or system that can be improved by TRIZ
10. Apply contradiction matrix to solve identified problem
11. Any contradictions?
12. Develop the DFMA worksheet of finalized design
13. End
1.8 Summary

DFMA and TRIZ could be considered as combined design tool that can solve many product design problems during early design stage which capable to deliver simple design with same or better functioning. The outcomes are seen as one of the most reliable after sales.