APPLICATION OF KOHONEN NEURAL NETWORK AND ROUGH APPROXIMATION FOR OVERLAPPING CLUSTERS OPTIMIZATION

M.N.M. Sap¹, E. Mohebi²

¹,²Faculty of Computer Science and Information Systems
University Teknologi Malaysia
81300 Skudai, Johor

Email: ¹mohdnoor@utm.my, ²mehsan3@siswa.utm.my

Abstract: In this paper, the Kohonen Self Organizing Map one of the most popular tools in the exploratory phase of pattern recognition is proposed for clustering the input data. Recently researchers found that to have precise and optimized clustering operations and also to capture the ambiguity that comes from the data sets, it is not necessary to have crisp boundaries in some clustering operation. To overcome the mentioned ambiguity, two variation of cluster approximation (upper and lower) have been applied by Rough set theory. In the first stage the SOM is employed to produce the prototypes then, in the second stage the rough set is applied on the output grid of SOM to detect the ambiguity of SOM clustering. One of the most general optimization techniques (Simulated Annealing) have been adopted to assign the overlapped data to true clusters they belong to by minimizing the uncertainty criteria. Experiments show that the proposed two-level algorithm is more accurate and generates fewer errors as compared with crisp clustering operations.

Keywords: Clustering, Self Organizing Map, Ambiguity, Simulated Annealing, Overlapped data.

1. INTRODUCTION

The Self Organizing Map (SOM) proposed by T.Kohonen (1982), has been widely used in industrial applications such as pattern recognition, biological modelling, data compression, signal processing and data mining (T. Kohonen, 1997; M.N.M Sap and E. Mohebi, 2008a, 2008b, 2008c). It is an unsupervised and nonparametric neural network approach. The success of the SOM algorithm lies in its simplicity that makes it easy to understand, simulate and be used in many applications. The basic SOM consists of neurons usually arranged in a two-dimensional structure such that there are neighbourhood relations among the neurons. After
completion of training, each neuron is attached to a feature vector of the same dimension as input space. By assigning each input vector to the neuron with nearest feature vectors, the SOM is able to divide the input space into regions (clusters) with common nearest feature vectors. This process can be considered as performing vector quantization (VQ) (R.M. Gray, 1984). In addition, because of the neighborhood relation contributed by the inter-connections among neurons, the SOM exhibits another important property of topology preservation.

Clustering algorithms attempt to organize unlabeled input vectors into clusters such that points within the cluster are more similar to each other than vectors belonging to different clusters (N. R. Pal, et al., 1993). The clustering methods are of five types: hierarchical clustering, partitioning clustering, density-based clustering, grid-based clustering and model-based clustering (J. Han and M. Kamber, 2000). The rough set theory employs two upper and lower thresholds in the clustering process, which result in a rough clusters appearance. This technique also could be defined in incremental order i.e. the number of clusters is not predefined by users.

In this paper, a new two-level clustering algorithm is proposed. The idea is that the first level is to train the data by the SOM neural network and then clustering at the second level is a rough set based incremental clustering approach (S. Ashraf, et al., 2006), which will be applied on the output of SOM and requires only a single neurons scan. The optimal number of clusters can be found by rough set theory, which groups the given neurons into a set of overlapping clusters (clusters the mapped data respectively). Then the overlapped neurons will be assigned to the true clusters they belong to, by apply simulated annealing algorithm. A simulated annealing algorithm has been adopted to minimize the uncertainty that comes from some clustering operations. In our previous work (M.N.M. Sap and E. Mohebi, 2008a) the hybrid SOM and rough set has been applied to catch the overlapped data only, but the experiment results show that the proposed algorithm (SA-Rough SOM) outperforms the previous one.

This paper is organized as following; in section 2, the basics of SOM algorithm are outlined. The Incremental Clustering and Rough set theory are described in section 3. In section 4, the essence of simulated annealing is described. The proposed algorithm is presented in section 5. Section 6 is dedicated to experiment results, section 7 provides brief conclusion, and future works.

2. SELF ORGANIZING MAP AND CLUSTERING

Competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input categories, sets of samples in a specific domain of the input space. A set of patterns of the inputs are presented to the network in arbitrary order.

The division is performed in such a way that the neuron that is best suited for the presentation is selected. If there exist an overlapped lattice, the competition is not only restricted to the winning neuron, but also its neighbors. The final map becomes a rough clusters appearance. This technique also could be defined in incremental order i.e. the number of clusters is not predefined by users.

The basic SOM algorithm is to compute a weight vector \(\mathbf{w}_i = [w_{i1}, \ldots, w_{id}] \) for the training set. During training, the weight vector of the winning neuron \(c \) is updated as follows:

\[
\mathbf{w}_i(t+1) = \mathbf{w}_i(t) + \alpha(t) \cdot \mathbf{e}(t) \cdot \mathbf{h}(c, \mathbf{i}(t))
\]

where \(\mathbf{e}(t) \) is the error, \(\mathbf{h}(c, \mathbf{i}(t)) \) is the neighborhood kernel function, \(\alpha(t) \) is a learning rate, \(c \) is the winning neuron.

Both learning rate and neighborhood kernel function are decreased as the training progresses. During training, the same weight vector is moved in the same direction. Because there are many variants of SOM algorithms.
of the input space. A division of neural nodes emerges in the network to represent different patterns of the inputs after training.

The division is enforced by competition among the neurons: when an input \(x \) arrives, the neuron that is best able to represent it wins the competition and is allowed to learn it even better. If there exist an ordering between the neurons, i.e. the neurons are located on a discrete lattice, the competitive learning algorithm can be generalized. Not only the winning neuron but also its neighboring neurons on the lattice are allowed to learn, the whole effect is that the final map becomes an ordered map in the input space. This is the essence of the SOM algorithm. The SOM consist of \(m \) neurons located on a regular low-dimensional grid, usually one or two dimensional. The lattice of the grid is either hexagonal or rectangular.

The basic SOM algorithm is iterative. Each neuron \(i \) has a \(d \)-dimensional feature vector \(w_i = [w_{i1}, \ldots, w_{id}] \). At each training step \(t \), a sample data vector \(x(t) \) is randomly chosen for the training set. Distance between \(x(t) \) and all feature vectors are computed. The winning neuron, denoted by \(c \), is the neuron with the feature vector closest to \(x(t) \):

\[
 c = \arg \min_i \| x(t) - w_i \|, \quad i \in \{1, \ldots, m\}
\]

(1)

A set of neighboring nodes of the winning node is denoted as \(N_c \). We define \(h_c(t) \) as the neighborhood kernel function around the winning neuron \(c \) at time \(t \). The neighborhood kernel function is a non-increasing function of time and of the distance of neuron \(i \) from the winning neuron \(c \). The kernel can be taken as a Gaussian function:

\[
h_c(t) = e^{-\frac{\|P_{oi} - P_{oc}\|^2}{2\sigma(t)^2}}
\]

(2)

where \(P_{oi} \) is the coordinates of neuron \(i \) on the output grid and \(\sigma(t) \) is kernel width. The weight update rule in the sequential SOM algorithm can be written as:

\[
w_i(t+1) = \begin{cases} w_i(t) + \varepsilon(t)h_c(t)(x(t) - w_i(t)) & \forall i \in N_c \\ w_i(t) & \text{else} \end{cases}
\]

(3)

Both learning rate \(\varepsilon(t) \) and neighborhood \(\sigma(t) \) decrease monotonically with time. During training, the SOM behaves like a flexible net that folds onto a cloud formed by training data. Because of the neighborhood relations, neighboring neurons are pulled to the same direction, and thus feature vectors of neighboring neurons resemble each other. There are many variants of the SOM (Yan and Yaoguang, 2005; M.N.M. Sap and E. Mohebi, Jilid 20, Bil.4 (Disember 2008) Jurnal Teknologi Maklumat
However, these variants are not considered in this paper because the proposed algorithm is based on SOM, but not a new variant of SOM.

3. INCREMENTAL CLUSTERING AND ROUGH SET THEORY

3.1 Incremental Clustering

Incremental clustering (A. K Jain, et al., 1999) is based on the assumption that it is possible to consider data points one at a time and assign them to existing clusters. Thus, a new data item is assigned to a cluster without looking at previously seen patterns. Hence the algorithm scales well with size of data set.

It employs a user-specified threshold and one of the patterns as the starting leader (cluster’s leader). At any step, the algorithm assigns the current pattern to the most similar cluster (if the distance between pattern and the cluster’s leader is less or equal than threshold) or the pattern itself may get added as a new leader if its similarity with the current set of leaders does not qualify it to get added to any of the existing clusters. The set of leaders found acts as the prototype set representing the clusters and is used for further decision making. A high-level description of a typical incremental algorithm is as figure 1 (Stahl, H., 1986).

```
Incremental_Clustering (Data, Thr)
Cluster_Leader = d1;
While (there is unlabeled data)
    For (i = 2 to N)
        If (dis (Cluster_Leader, di) <= Thr)
            Put di in the same cluster as Cluster_Leader;
        Else
            // new Cluster
            Cluster_Leader = di;
    //end of while

Figure 1. Incremental clustering algorithm
```

An incremental clustering algorithm for dynamic information processing was presented by Can.F. (1993). The motivation behind this work is that, in dynamic databases, items might get added and deleted over time. These changes should be reflected in the partition generated without significantly affecting the current clusters. This algorithm was used to cluster incrementally a database of 12,684 documents.

3.2 Incremental Clustering

This algorithm is a soft clustering algorithm that groups the given data set into clusters. The lower approximation and upper approximation are required to form a soft partition. Let U be a set of all objects, $C_i \in U$ are required to form a set of soft clusters with the lower approximation and upper approximation.

1. $\emptyset \subseteq \underline{A}(C_i) \subseteq \overline{A}(C_i)$
2. $\underline{A}(C_i) \cap \overline{A}(C_i) = \emptyset$
3. $\underline{A}(C_i) \cap C_i = C_i$
4. If an object $u_k \in C_i$ is not similar to two or more users or objects, then u_k is not applicable.

Note that (1)-(4) are the basic rules for understanding the basic concepts of a Rough set.

The lower approximation of a set C_i that includes a soft cluster C and the upper approximation of C permits overlaps, each of which is an indiscernible set. Thus, a rough set is formed by the pair of lower and upper approximation. Each object u_k is assigned to one of the soft clusters (clusters with membership degree 1).

For a rough set, there are three distinct possibilities:

1. Both u_k and u_k are in the same lower approximation.
2. Object u_k is in the same lower approximation.
3. Both u_k and u_k are not in the same lower approximation. Thus, u_k is not applicable.
The quality of a conventional clustering scheme is determined using within group error (S.C. Sharma and A. Werner, 1993) \(\Delta \) given by:

\[
\Delta = \sum_{i=1}^{n} \sum_{u_k, u_l \in C_i} \text{distance } (u_k, u_l)
\]

where \(u_k, u_l \) are objects in the same cluster \(C_i \).

3.2 Incremental Clustering and Rough set theory

This algorithm is a soft clustering method employing rough set theory (Pawlak Z., 1982). It groups the given data set into a set of overlapping clusters. Each cluster is represented by a lower approximation and an upper approximation \((A(C), \tilde{A}(C)) \) for every cluster \(C \subseteq U \). Here \(U \) is a set of all objects under exploration. However, the lower and upper approximations of \(C_i \in U \) are required to follow some of the basic rough set properties such as:

1. \(\emptyset \subseteq A(C_i) \subseteq \tilde{A}(C_i) \subseteq U \)
2. \(A(C_i) \cap A(C_j) = \emptyset, i \neq j \)
3. \(A(C_i) \cap \tilde{A}(C_j) = \emptyset, i \neq j \)
4. If an object \(u_k \in U \) is not part of any lower approximation, then it must belong to two or more upper approximations.

Note that (1)-(4) are not independent. However enumerating them will be helpful in understanding the basic of rough set theory.

The lower approximation \(A(C) \) contains all the patterns that definitely belong to the cluster \(C \) and the upper approximation \(\tilde{A}(C) \) permits overlap. Since the upper approximation permits overlaps, each set of data points that are shared by a group of clusters define indiscernible set. Thus, the ambiguity in assigning a pattern to a cluster is captured using the upper approximation. Employing rough set theory, the proposed clustering scheme generates soft clusters (clusters with permitted overlap in upper approximation) see figure 2. A high-level description of a rough incremental algorithm is as figure 3 (Lingras, et al., 2004).

For a rough set clustering scheme and given two objects \(u_k, u_l \in U \) we have three distinct possibilities:

1. Both \(u_k \) and \(u_l \) are in the same lower approximation \(A(C) \).
2. Object \(u_k \) is in lower approximation \(A(C) \) and \(u_l \) is in the corresponding upper approximation \(\tilde{A}(C) \), and case 1 is not applicable.
3. Both \(u_k \) and \(u_l \) are in the same upper approximation \(\tilde{A}(C) \), and case 1 and 2 are not applicable.
The total error is

\[\text{error} = \sum_{i=1}^{n} (w_i \cdot \text{distance}(u_i, u_k)) \]

Since \(\Delta_k \) corresponds to the weight \(w_k \) should.

4. BASIC OF SIMULATED ANNEALING

Simulated Annealing solves problems by incorporating a search of optimal solutions from which thermodynamics, the temperature \(T \) is

Consider two solutions, \(x \) and \(y \), and a ratio of probabilities, \(p \), which is

In our proposed method,

1. Randomly select a neighbor.
2. Compute \(x \) and \(y \) distance in \(x \).
3. Case 1. If \(\Delta E < 0 \), next step.
4. Case 2. If \(\Delta E \geq 0 \), probability, keep the

Figure 3: Rough set Incremental Clustering algorithm.

For these possibilities, three types of equation (4) could be defined as following:

\[\Delta_1 = \sum_{i=1}^{n} \sum_{u_k \in X} \text{distance}(u_i, u_k) \]

\[\Delta_2 = \sum_{i=1}^{n} \sum_{u_k \in X} \sum_{u_i \in X} \text{distance}(u_i, u_k) \]

\[\Delta_3 = \sum_{i=1}^{n} \sum_{u_k \in X} \text{distance}(u_i, u_k) \]
The total error of rough set clustering will then be a weighted sum of these errors:

\[
\Delta_{\text{total}} = w_1 \times \Delta_1 + w_2 \times \Delta_2 + w_3 \times \Delta_3
\]

where \(w_1 > w_2 > w_3 \). \hspace{1cm} (6)

Since \(\Delta_1 \) corresponds to situations where both objects definitely belong to the same cluster, the weight \(w_1 \) should have the highest value.

4. BASIC OF SIMULATED ANNEALING GREEDY SEARCH

Simulated Annealing (Laraboven and Aarts, 1987) tries to overcome the local minima problems by incorporating probabilistic, rather than strictly deterministic approaches, in search of optimal solutions (see figure 4). We briefly overview the statistical mechanics aspects from which simulated annealing is conceived (Munakala, T., 2008). In thermodynamics, the probability of finding the system in a particular state with the energy \(E \) and temperature \(T \) is proportional to the Boltzmann probability:

\[
\frac{e^{-\frac{E}{kT}}}{e^{-\frac{E_1}{kT}}} \quad \text{where } k \text{ is the Boltzmann constant.} \hspace{1cm} (7)
\]

Consider two state \(S_1 \) and \(S_2 \) with energy \(E_1 \) and \(E_2 \), and the same temperature \(T \). The ratio of probabilities of the two states is as following:

\[
\frac{e^{\frac{(E_1 - E_2)}{kT}}}{e^{\frac{(E_1 - E_2)}{kT}}} \hspace{1cm} (8)
\]

In our proposed method, the process of simulated annealing is as follows:

1. Randomly select solution vector \(x \) for the 0th iteration. Set \(T \) to \(T_0 \).
2. Compute \(x_p \), a perturbed solution of \(x \). \(x_p \) maybe obtained by randomly swapping two instances in \(x \). Determine \(\Delta E = E(x_p) - E(x) \).
3. Case 1. If \(\Delta E < 0 \), i.e., \(x_p \) is a better solution than \(x \) then select \(x_p \) as new \(x \) for the next step.
 Case 2. If \(\Delta E \geq 0 \), select \(x_p \) with \(\frac{\Delta E}{e^{\frac{\Delta E}{T}}} \) probability, keep current \(x \) with...
Probability.

4. Repeat step 2 and 3 until $|\Delta E|$ is small enough.

5. Reduce T by, for example, $T_{new} = 0.9 \times T_{current}$. Repeat step 2 through 4. Terminate the entire process when T reduces zero or a small number.

\[
T_{t} = \frac{T_{0}}{\log(1+t)} \quad \text{where } t \text{ is the } t^{th} \text{ iterate.} \quad (9)
\]

5. ROUGH SET CLUSTERING OF THE SOM USING SIMULATED ANNEALING

We had successful experiments on our previous work, Rough SOM (M.N.M. Sap and E. Mohebi, 2008a), but to assign overlapped data to true cluster they belong to, the simulated annealing is employed. In this paper rectangular grid is used for the SOM. Before training process begins, the input data will be normalized. This will prevent one attribute from overpowering in clustering criterion. The normalization of the new pattern $X_{i} = \{x_{ij}, \ldots, x_{id}\}$ for $i = 1,2,\ldots,N$ is as following:

\[
X_{y} = \frac{X_{y} - \min(\text{att}_{j})}{\max(\text{att}_{j}) - \min(\text{att}_{j})}. \quad (10)
\]

Once the training phase of the SOM neural network completed, the output grid of neurons which is now stable to network iteration, will be clustered by applying the rough set algorithm as described. The clustering of neuron proposed method (some of overlapped data) from being processed.

From the rough indiscernible (those with a certain level of similarity relation has been)

According to the overlapped data (those calculate errors and results of the SOM distances to each m following matrix:

\[
M. \quad \text{Simulated annealing optimize the clustering of neurons. The possible which minimize the error:}
\]

After the algorithm overlapped data are as
algorithm as described in the previous section. The similarity measure used for rough set clustering of neurons is Euclidean distance (the same used for training the SOM). In this proposed method (see Figure 5) some neurons, those never mapped any data are excluded from being processed by rough set algorithm.

From the rough set algorithm it can be observed that if two neurons are defined as indiscernible (those neurons in the upper approximation of two or more clusters), there is a certain level of similarity they have with respect to the clusters they belong to and that similarity relation has to be symmetric. Thus, the similarity measure must be symmetric.

According to the rough set clustering of the SOM, overlapped neurons and respectively overlapped data (those data in the upper approximation) are detected. In the experiments, to calculate errors and uncertainty, the previous equations (5) and (6) will be applied to the results of the SOM (clustered and overlapped data). The \(n \) overlapped neurons and the distances to each \(m \) cluster centers they belong to (overlapped) could be represented as the following matrix:

\[
M = \begin{bmatrix}
 d_{11} & d_{12} & \cdots & d_{1m} \\
 d_{21} & d_{22} & \cdots & d_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{n1} & \vdots & \cdots & d_{nm}
\end{bmatrix}
\]

The distance between neuron \(i \) and the cluster centre \(j \) is determined as \(d_{ij} \) in matrix \(M \). Simulated annealing is then applied to the set of distances to minimize the (11) which optimize the clustering operation by assigning the nearest cluster centre to the overlapped neurons. The possible optimum-selected vector \(x = (v_1, v_2, \ldots, v_n) \) could be as \((d_{j1}, d_{j2}, \ldots, d_{jm}) \), which minimize the energy function as given as following:

\[
F = \sum_{i=1}^{n} \sum_{j=1}^{m} d_{ij}
\]

After the algorithm terminated, the clustering scheme would be as figure 6. The overlapped data are assigned to true clusters they belong to efficiently.
6. EXPERIMENTATION

To demonstrate Incremental clustering, an example has been done.

The first and in the second clustering of SOM, compared to clustering of SOM that the value 100 epochs on Rough SOM is configured as the grid.

The artificial plant is linear and once with Table 2: The data set, from...
6. EXPERIMENT RESULTS

To demonstrate the effectiveness of the proposed clustering algorithm SA-RSOM (Rough set Incremental clustering of the SOM using Simulated Annealing), two phases of experiments has been done on two data sets, one artificial and one real-world data set.

The first phase of experiments presents the certainty that comes from the both data sets and in the second phase the errors has been generated. The results of SA-RSOM are compared to RI-SOM (M.N.M. Sap and E. Mohebi, 2008b) and I-SOM (Incremental clustering of SOM) (M.N.M. Sap and E. Mohebi, 2008c). The input data are normalized such that the value of each datum in each dimension lies in [0,1]. For training, SOM 10×10 with 100 epochs on the input data is used. The general parameters for the SA algorithm have been configured as table 1.

The artificial data set has 569 data of 30 dimensions, which is trained once with I-SOM and once with RI-SOM then at last trained with SA-RSOM. The generated certainty (figure 7) is gained by the equation (12). From the table 2, it could be observed that the certainty-level in clustering prediction of SA-RSOM is more accurate compare to RI-SOM and I-SOM.

Table 1: The general parameters of the simulated annealing algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>0.65</td>
</tr>
<tr>
<td>Number of Steps</td>
<td>100</td>
</tr>
<tr>
<td>Decrement Ratio</td>
<td>0.9</td>
</tr>
<tr>
<td>Boltzmann Probability (%)</td>
<td>Random in (0,1)</td>
</tr>
<tr>
<td>The Ratio of Probability</td>
<td>$\frac{</td>
</tr>
</tbody>
</table>

Table 2: The certainty-level generated by I-SOM, RI-SOM and SA-RSOM on the artificial data set, from epoch 100 to 500.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-SOM</td>
<td>56.29</td>
<td>67.78</td>
<td>79.91</td>
<td>91.29</td>
<td>92.51</td>
</tr>
<tr>
<td>RI-SOM</td>
<td>72.23</td>
<td>78.96</td>
<td>84.32</td>
<td>94.33</td>
<td>98.21</td>
</tr>
<tr>
<td>SA-RSOM</td>
<td>82.49</td>
<td>85.45</td>
<td>87.01</td>
<td>96.75</td>
<td>98.65</td>
</tr>
</tbody>
</table>

The second data set is Iris data set from the UC Irvine Machine Learning Repository Database, has been widely used in pattern classification. It has 150 data points of four dimensions. The data are divided into three classes with 50 points each. The first class of Iris plant is linearly separable from the other two. The other two classes are overlapped to some
extent. Figure 8, shows the certainty generated from epoch 100 to 500. From the gained certainty, it is obvious that the SA-RSOM could efficiently detect the overlapped data that have been mapped by overlapped neurons (table 3).

![Graph showing certainty from epoch 100 to 500](image)

Figure 7: The Comparative results for the artificial data set, from epoch 100 to 500.

Table 3: The certainty-level generated by I-SOM, RI-SOM and SA-RSOM on the Iris data set, from epoch 100 to 500.

<table>
<thead>
<tr>
<th>Epoch</th>
<th>I-SOM</th>
<th>RI-SOM</th>
<th>SA-RSOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>33.33</td>
<td>67.07</td>
<td>69.35</td>
</tr>
<tr>
<td>200</td>
<td>65.23</td>
<td>73.02</td>
<td>72.54</td>
</tr>
<tr>
<td>300</td>
<td>76.01</td>
<td>81.98</td>
<td>82.26</td>
</tr>
<tr>
<td>400</td>
<td>89.47</td>
<td>91.23</td>
<td>95.27</td>
</tr>
<tr>
<td>500</td>
<td>92.01</td>
<td>97.33</td>
<td>98.05</td>
</tr>
</tbody>
</table>

In the second phase, the same initialization for the SOM has been used. Our proposed algorithms have generated the errors (table 4) that come from both data sets, according to the equations (5) and (6). The weighted sum equation (6) has been configured as following:

\[
\sum_{i=1}^{J} w_i = 1
\]

Subject to:

\[
w_i = \frac{1}{6} \times (4 - i).
\]

7. CONCLUSION AND FUTURE WORK

In this paper a two-level iterative RSOM has been used to detect overlapped data. The approach is based on the fact that the proposed algorithms have generated the errors (table 4) that come from both data sets, according to the equations (5) and (6). The weighted sum equation (6) has been configured as following:

\[
\sum_{i=1}^{J} w_i = 1
\]

Subject to:

\[
w_i = \frac{1}{6} \times (4 - i).
\]
Figure 8: The Comparative results for the Iris data set, from epoch 100 to 500.

Table 4: The comparative generated errors

<table>
<thead>
<tr>
<th>Method</th>
<th>Δ_1</th>
<th>Δ_2</th>
<th>Δ_3</th>
<th>Δ_{total}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Data set</td>
<td>SA-RSOM</td>
<td>0.6</td>
<td>0.88</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>I-SOM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iris Data set</td>
<td>SA-RSOM</td>
<td>1.05</td>
<td>0.85</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>I-SOM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. CONCLUSION AND FUTURE WORK

In this paper a two-level based clustering approach (SA-RSOM), has been proposed to predict clusters of high dimensional data and detect the uncertainty that comes from the overlapping data. The approach is based on the rough set theory that employs a soft clustering which can detects overlapped data from the data set and makes clustering as precise as possible, then SA is applied to find the true cluster for each overlapped data. The results of the both phases indicate that SA-RSOM is more accurate and generates fewer errors as compare to crisp clustering (I-SOM).

The proposed algorithm detects accurate overlapping clusters in clustering operations. As the future work, the overlapped data also could be assigned correctly to true clusters they belong to, by assigning fuzzy membership value to the indiscernible set of data. In addition, a weight can be assigned to the data's dimension to improve the overall accuracy.
ACKNOWLEDGEMENTS

The Research Management Centre, University Technology Malaysia (UTM) and the Malaysian Ministry of Science, Technology and Innovation (MOSTI) supported this research under vote number 79224.

REFERENCES

