RESERVOIR STORAGE SIMULATION AND FORECASTING MODELS
FOR MUDA IRRIGATION SCHEME, MALAYSIA

JOOMIZAN BINTI NOORDIN

A project report submitted in partial fulfillment of the requirements for the award of the Master of Engineering (Civil-Hydraulics and Hydrology)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL 2010
I declare that this thesis entitled “RESERVOIR STORAGE SIMULATION AND FORECASTING MODELS FOR MUDA IRRIGATION SCHEME, MALAYSIA” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : ..
Date : ..
ABSTRACT

Reservoir operation policies aim at deriving maximum benefits from water that can be stored in it and allocated to crops. Water shortage is the main constraint in establishing stable irrigation water management in Muda Irrigation Scheme, Kedah, Malaysia. Thus, the objective of this study is to develop a reservoir simulation model and to consider stochastic models and Log-Pearson Type III distribution to generate storage to compare with the observed storage, and to forecast future storage to examine the performance of the reservoir with reliability under changing conditions. The reservoir simulation model storage amounts were calculated for 1998-2008 using measured values of rainfall and evaporation (reservoir station no. 61), reservoir inflow, release, seepage, spill, and Muda reservoir inflow. The developed reservoir simulation model results simulated well with the mean monthly observed long-term storage amounts (1998-2008), except for a few months where the model storages are found relatively higher than the observed storage amounts. A stage-storage curve is plotted using the monthly observed values of storage and water level from 1998-2008 to covert water level into storage and vice versa. The first order Markov model with periodicity and Log-Pearson Type III distribution are considered to generate storage amounts to compare with the mean monthly observed storages, and hence to forecast future storage with reliability. The first order Markov model generated and observed mean storage amounts were compared for each month. The comparison results imply that the monthly statistical parameters of the historic record, except the lag1 serial correlation between December and January months (i.e., over-year monthly correlations), are preserved satisfactorily. The storage amounts are forecasted for year 2009-2015 to be used in future reservoir operation, using first order Markov model. The expected mean and minimum storage amounts for different return periods are estimated, using Log-Pearson Type III distribution and trendlines with equations and R^2 values are shown, to help decision makers to estimate future storage with corresponding return period under any changing weather conditions and or demand.
ABSTRAK

CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xi</td>
</tr>
</tbody>
</table>

I INTRODUCTION

1.1 Background

2.2 Statement of the Problem

1.3 Justification of the Study

1.4 Objectives of the Study

1.5 Scope of the Study

II LITERATURE REVIEW

2.1 General Remarks

2.2 Water Management in Reservoir

2.3 The integration of Reservoir Operation Policies and Allocation of Irrigation Area

2.4 The Models

2.5 Forecasting

2.5.1 Markov First Order Method

2.5.2 Log Pearson Type III Distribution

2.6 Concluding Remarks

III STUDY AREA AND DATA COLLECTION

3.1 Study Area
3.2 Major River Systems and Climate Change in Muda Irrigation Scheme

3.3 Data Collection

IV MODEL DEVELOPMENT AND CONSIDERATIONS
4.1 General Remarks
4.2 Reservoir Simulation Model
4.3 Reservoir Forecasting Models
4.3.1 First Order Markov Model
4.3.2 First Order Markov Model with Periodicity
4.3.3 Log-Pearson Type III Distribution
4.4 Concluding Remarks

V RESULTS AND DISCUSSION
5.1 Reservoir Simulation
5.2 Hydrologic Forecasting for Reservoir Storage

VI SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
6.1 Summary and Conclusions
6.2 Recommendations

REFERENCES

APPENDICES

A

B
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>General features of MUDA Irrigation Scheme</td>
<td>23</td>
</tr>
<tr>
<td>Table 2</td>
<td>Observed Pedu storage with release after allowing for spill (MCM)</td>
<td>26</td>
</tr>
<tr>
<td>Table 3</td>
<td>Step-by-step procedure of calculating model storage for Pedu reservoir for March, using natural logarithm of observed storage (MCM)</td>
<td>41</td>
</tr>
<tr>
<td>Table 4</td>
<td>Step-by-step procedure of calculating generated and forecasted storage for Pedu reservoir for March, using natural logarithm of observed storage (MCM)</td>
<td>43</td>
</tr>
<tr>
<td>Table 5</td>
<td>Expected minimum storage in Pedu reservoir for different return periods, using Log-Pearson Type III Distribution</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIG. NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Location Map of Muda Irrigation Scheme</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Major River Systems in Kedah</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Pedu Water Level vs. Storage Curve using Observed Data (1998-2008)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Mean, Minimum and Maximum Observed Monthly Pedu Reservoir Storage with Release (MCM)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Comparison of Pedu Reservoir Simulation Model Results with the Observed Mean Monthly Storages during 1998-2008</td>
<td>39</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Pedu Reservoir Observed and Model Storages in Different Months and Years</td>
<td>41</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Pedu Reservoir Observed, Model and Forecasted Storages in Different Months and Years</td>
<td>42</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Reliability based Estimated Storage (MCM) in Different Months, Considering Average Observed Flow and using Log-Pearson Type III Distribution</td>
<td>44</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Reliability based Estimated Minimum Storage (MCM), Considering Minimum Observed Storage for each Month during 1998-2008 and using Log-Pearson Type III Distribution</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

A
Cross-sectional area

$A_r(t)$
Reservoir surface area

$A_w(t)$
Watershed area during period t

$E(t)$
Evaporation rate at the reservoir surface area

ET_p
Potential evapotranspiration

$ET_p(t, t + \Delta t)$
Evapotranspiration between t and $t + \Delta t$

$IG(t)$
Any other gain

GCM
General Circulation Model

GIS
Geographic Information System

$I(t, t + \Delta t)$
Infiltration/percolation between t and $t + \Delta t$

$IL(t)$
Any other loss

LP
Linear Programming

MADA
Muda Agricultural Development Authority

$P(t)$
Precipitation falling on the reservoir surface area

$P(t, t + \Delta t)$
Precipitation between t and $t + \Delta t$

$Q_i(t)$
Inflow to the reservoir per unit watershed area during period t

Q_{i-1}
Water delivered by conveyance system to the field (outflow)

$Q_s(t)$
Uncontrolled releases downstream or spills from the reservoir

$R(t)$
Required reservoir release rate

$R(t, t + \Delta t)$
Runoff between t and $t + \Delta t$

SP
Seepage and percolation losses

X_i
Measured value of storage at time i

X_{i+1}
Generated streamflow
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>Average of the absolute values of deviations from the mean</td>
</tr>
<tr>
<td>Y_i</td>
<td>Measured transformed value of storage at time i</td>
</tr>
<tr>
<td>Y_{i+1}</td>
<td>Transformed generated streamflow</td>
</tr>
<tr>
<td>$Y(t)$</td>
<td>Reservoir yield</td>
</tr>
<tr>
<td>ε_{i+1}</td>
<td>Random component with mean zero and variance σ^2_ε</td>
</tr>
<tr>
<td>μ_x</td>
<td>Mean of X</td>
</tr>
<tr>
<td>$\rho_s(t)$</td>
<td>First order serial correlation</td>
</tr>
<tr>
<td>Δt</td>
<td>Time step</td>
</tr>
</tbody>
</table>
INTRODUCTION

1.1 Background

Allocation and management of water for agricultural purposes is a complex issue affected by social, environmental and political factors. Reservoirs are very useful choices for storage of irrigation water to use in drought periods. Optimal operation of reservoir systems is important for effective and efficient management of available water resources for maximum system net benefit (Consoli et al. 2008; Nandalal and Sakthivadivel 2002; Raju and Kumar 1999; Suiadee and Tingsanchali, 2007; Shrestha et al., 1996).

In water resources development, reservoirs play a major role in modifying uneven distribution of water both in space and time. To make the best use of the available water, the optimal operation of reservoirs in a system is undoubtedly very important though it is a very complicated task. During the last several decades many attempts have been made towards solving this problem by various mathematical means (Wurbs, 2005).
Irrigation projects which receive water from a reservoir can be challenging to manage, since annual fluctuations in runoff from the reservoir's catchments area can have considerable impact on the irrigation management strategy. (Shrestha et al., 1996) mentioned that there is a general realization that many irrigation networks are failing in their fundamental function of delivering water, where and when it is needed, and in the right quantity. Irrigation departments, particularly in developing countries, have been suffering financial setbacks and therefore implementing improved techniques for operational management of these systems receives inadequate attention.

Irrigation reservoir operation policies are aimed at deriving maximum benefits from the water that can be stored in it and allocated to crops. Water releases from reservoirs have to be conveyed through a hierarchical distribution system of canals, branch canals, distributaries and field turnouts or outlets before they reach the cropped fields. The operations are complex but substantial increases in benefits can be derived even from relatively small increases in operating efficiency (Maidment and Chow, 1981). Water management basically consists of determining when to irrigate the amount to be applied during each state of plant growth, and the operation and maintenance of the system. Water distribution systems and management strategies that enable users to apply water uniformly and accurately require large capital investments. All the three stages of the irrigation operation problems, namely, determining the reservoir releases, transferring them to the field level, and allocating the field supplies to crops are important components of operation of large irrigation systems. Missing any one of these components can lead to low agricultural productivities and operating efficiencies.
1.2 Statement of the Problem

Malaysia has mostly arid and semiarid climate, and spatial and temporal distribution of rainfalls is irregular. Food demand is rapidly increasing with increasing population. Water resources system of Malaysia has a complex structure and financial opportunities to construct new dams are very restricted depends on the purposes of construction, economical value and etc. Water resources managers and decision makers paid a significant attention on optimum operation of reservoirs during the last decade. Mathematical programming methods were the most widely applied methods of optimization.

Water is main component for living beings on earth to continue their lives. But, now-a-days the problem related to water such water shortage is very crucial. This can be happened due to improper water management. The proper management is very important in order to sustain the water resources with high water quality and can reduce the problem on water shortage.

Reservoir is one of the sources of surface water. It can reserve the water and supply water to the people. Reservoir will regulate inflows and provide outflows at more regular rate, which is determined by water demand, temporarily storing the surplus when inflows exceed outflows. These days reservoir has been facing a lot of problems such as low water quality and water release not following an energy-efficient schedule. It gives tendency of occurrence of water shortage.

According to previous studies, the water volume of Pedu and Muda dams experience frequent deficit due to shortage of water supply from catchment. Thus, the plan is needed to be modified periodically during real-time operation based on
current season data and climate change. The Muda irrigation scheme is highly
dependent on rainfall, fulfilling about 51% of the irrigation requirements. Two dams
(Pedu and Muda) contribute about 29%, while the uncontrolled river flow and
recycling supply contribute about 15 and 5%, respectively (Ali et al., 2000; MADA,
1987). In fact, the reservoirs were so depleted that irrigation for the 1978 dry season
crop was impossible, and again in 1983 and 1984, only half of the area could be
irrigated (Kitamura, 1990).

The shortage of reservoir water remains the most serious constraints on the
establishment of stable double cropping of rice. The efficient utilization of water
resources needs information, such as, annual effective rainfall, runoff, consumptive
use, and reservoir release, etc., thus, a reservoir simulation model often used to
predict the response of the system under a given set of conditions. On the other hand,
forecasting are used for warning of extreme events (e.g., floods and droughts), for
operation of water resources systems such as reservoir, hydropower generation
projects and etc. In addition, the models can be used to predict the future
performance of reservoirs.

1.3 Justification of the Study

Water management generally means the supply, conveyance, distribution, and
application of the right amount of water at the right time to the right place so that the
plants would thrive and produce good yield.

The shortage of reservoir water still remains the most serious constraints on
the establishment of stable double cropping of rice. Thus, a reservoir simulation
model needs to be developed to estimate the reservoir yield precisely. Long-range water supply forecasting is an integral part of drought management and of water supply management itself. Stochastic data generation aims to provide alternative hydrologic data sequences that are likely to occur in future to assess the reliability of alternative systems designs and policies, and to understand the variability in future system performances. It is also very important to develop a stochastic hydrologic model to generate the monthly streamflows and thus to estimate the future streamflows with reliability.

1.4 Objectives of the Study

The main objectives to be carried out in this study are:

(i) To develop a reservoir simulation model to simulate model storages with the long-term observed storage amounts,

(ii) To use stochastic models to generate storage and to compare with the observed storage, and hence to forecast future storage with reliability.

1.5 Scope of the Study

The main scope of this study will be confined to the development of reservoir simulation model, and utilization of stochastic models to generate and forecast storage. The scopes of work that will be covered in this study are:

i. Collection of various relevant historical data from MADA.

ii. Development of various mandatory modules of reservoir systems.
REFERENCES

MADA (1987). *Feasibility report on tertiary irrigation facilities for intensive agricultural development in the Muda Irrigation Scheme*, vol. 1. MADA, Malaysia

