Universiti Teknologi Malaysia Institutional Repository

Cross-linked cyclodextrin glucanotransferase aggregates from Bacillus lehensis G1 for cyclodextrin production: Molecular modeling, developmental, physicochemical, kinetic and thermodynamic properties

Jailani, Nashriq and Jaafar, Nardiah Rizwana and Suhaimi, Suhaily and Mackeen, Mukram Mohamed and Abu Bakar, Farah Diba (2022) Cross-linked cyclodextrin glucanotransferase aggregates from Bacillus lehensis G1 for cyclodextrin production: Molecular modeling, developmental, physicochemical, kinetic and thermodynamic properties. International Journal of Biological Macromolecules, 213 (-). pp. 516-533. ISSN 0141-8130

[img] PDF
2MB

Official URL: http://dx.doi.org/10.1016/j.ijbiomac.2022.05.170

Abstract

Type of cross-linking agents influence the stability and active cross-linked enzyme aggregates (CLEA) immobilization. The information of molecular interaction between enzyme-cross linker is not well explored thus screening wide numbers of cross-linker is crucial in CLEA development. This study combined the molecular modeling and experimental optimization to investigate the influences of different cross-linking agents in developing CLEA of cyclodextrin glucanotranferase G1 (CGTase G1) for cyclodextrins (CDs) synthesis. Seven types of cross-linkers were tested and CGTase G1 cross-linked with chitosan (CS-CGTG1-CLEA) displayed the highest activity recovery (84.6 ± 0.26%), aligning with its highest binding affinity, radius of gyration and flexibility through in-silico analysis towards CGTase G1. CS-CGTG1-CLEA was characterized and showed a longer half-life (30.06 ± 1.51 min) and retained a greater thermal stability (52.73 ± 0.93%) after 30 min incubation at optimal conditions compared to free enzyme (10.30 ± 1.34 min and 5.51 ± 2.10% respectively). CS-CGTG1-CLEA improved CDs production by 33% and yielded cumulative of 52.62 g/L CDs after five cycles for 2 h of reaction. This study reveals that abundant of hydroxyl group on chitosan interacted with CGTase G1 surface amino acid residues to form strong and stable CLEA thus can be a promising biocatalyst in CDs production.

Item Type:Article
Uncontrolled Keywords:CLEA, cyclodextrin glucanotranferase, enzyme immobilization
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:100998
Deposited By: Narimah Nawil
Deposited On:18 May 2023 06:13
Last Modified:18 May 2023 06:13

Repository Staff Only: item control page